Generalized Quantifiers

We review recent work in the field of generalized quantifiers on finite models. We give an idea of the methods that are available in this area. Main emphasis is on definability issues, such as whether there is a logic for the PTIME properties of unordered finite models.

[1]  Anuj Dawar Generalized Quantifiers and Logical Reducibilities , 1995, J. Log. Comput..

[2]  Neil Immerman,et al.  Relational Queries Computable in Polynomial Time , 1986, Inf. Control..

[3]  李幼升,et al.  Ph , 1989 .

[4]  Neil Immerman,et al.  An optimal lower bound on the number of variables for graph identification , 1992, Comb..

[5]  Lauri Hella,et al.  Almost Everywhere Equivalence of Logics in Finite Model Theory , 1996, Bulletin of Symbolic Logic.

[6]  Anuj Dawar,et al.  Generalized quantifiers and 0-1 laws , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[7]  E. F. Codd,et al.  Relational Completeness of Data Base Sublanguages , 1972, Research Report / RJ / IBM / San Jose, California.

[8]  Alfred V. Aho,et al.  Universality of data retrieval languages , 1979, POPL.

[9]  Yuri Gurevich,et al.  Zero-One Laws , 2017, Bull. EATCS.

[10]  Lauri Hella,et al.  A double arity hierarchy theorem for transitive closure logic , 1996, Arch. Math. Log..

[11]  David Harel,et al.  Structure and Complexity of Relational Queries , 1980, FOCS.

[12]  Ronald Fagin,et al.  The number of finite relational structures , 1977, Discret. Math..

[13]  Lauri Hella,et al.  Partially Ordered Connectives and Finite Graphs , 1995 .

[14]  Lauri Hella,et al.  Definability of Polyadic Lifts of Generalized Quantifiers , 1997, J. Log. Lang. Inf..

[15]  Lauri Hella,et al.  The hierarchy theorem for generalized quantifiers , 1996, Journal of Symbolic Logic.

[16]  Perlindström First Order Predicate Logic with Generalized Quantifiers , 1966 .

[17]  Lauri Hella Logical Hierarchies in PTIME , 1996, Inf. Comput..

[18]  Juha Nurmonen,et al.  On Winning Strategies with Unary Quantifiers , 1996, J. Log. Comput..

[19]  Yuri Gurevich,et al.  Toward logic tailored for computational complexity , 1984 .

[20]  Lauri Hella,et al.  Deenability of Polyadic Lifts of Generalized Quantiiers , 1999 .

[21]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[22]  A. Mostowski On a generalization of quantifiers , 1957 .

[23]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[24]  Elias Dahlhaus,et al.  Skolem Normal Forms Concerning the Least Fixpoint , 1987, Computation Theory and Logic.