Politiques de pilotage de flux dans les chaînes logistiques : impact de l'utilisation des prévisions sur la gestion de stocks

Le pilotage de flux dans les chaines logistiques represente un enjeu majeur pour les entreprises qui leur permet d'ameliorer la qualite du service vis-a-vis des clients tout en reduisant les couts. Plusieurs travaux s'interessent a cette problematique en proposant des outils pour un meilleur pilotage. Cette these s'inscrit dans le cadre de ces travaux et a pour objectif de proposer de nouvelles politiques de pilotage de flux. Dans la premiere partie de ce travail, nous avons effectue une synthese des politiques existantes en mettant en evidence leurs similarites et leurs differences. Ceci nous a permis de proposer une classification de ces politiques en se basant sur le type de l'information disponible sur la demande, ce qui represente un outil d'aide au choix de la meilleure politique de pilotage dans un contexte industriel donne. Dans la deuxieme partie de ce travail, nous avons effectue une extension des politiques de gestion de stock classiques, basees sur une approche de renouvellement de la consommation, a des politiques basees sur une approche de pilotage par les besoins futurs, ces besoins etant exprimes sous forme de previsions. Ceci nous a permis de developper des nouvelles politiques dynamiques de gestion de stock sur previsions basees sur la notion d'incertitude previsionnelle. Nous avons egalement effectue une etude numerique comparative de ces politiques qui met en valeur les benefices de l'utilisation des previsions de la demande dans le pilotage de flux. Par ailleurs, nous avons analyse les equivalences qui existent entre les differentes politiques de pilotage de flux, traitees dans le cadre de cette these, ce qui nous a permis de donner une vision globale plus coherente de ces politiques et de mettre en exergue les relations qui existent entre elles.

[1]  H. Scarf THE OPTIMALITY OF (S,S) POLICIES IN THE DYNAMIC INVENTORY PROBLEM , 1959 .

[2]  R. Brown Statistical forecasting for inventory control , 1960 .

[3]  S. Karlin Dynamic Inventory Policy with Varying Stochastic Demands , 1960 .

[4]  S. Karlin,et al.  Studies in the Mathematical Theory of Inventory and Production, by K.J. Arrow, S. Karlin, H. Scarf with contributions by M.J. Beckmann, J. Gessford, R.F. Muth. Stanford, California, Stanford University Press, 1958, X p.340p., $ 8.75. , 1959, Bulletin de l'Institut de recherches économiques et sociales.

[5]  Arthur F. Veinott,et al.  Analysis of Inventory Systems , 1963 .

[6]  D. Iglehart Optimality of (s, S) Policies in the Infinite Horizon Dynamic Inventory Problem , 1963 .

[7]  Carl M. Harris,et al.  On One-For-One-Ordering Inventory Policies with State-Dependent Leadtimes , 1971, Oper. Res..

[8]  Joseph A. Orlicky,et al.  Material Requirements Planning: The New Way of Life in Production and Inventory Management , 1975 .

[9]  E. Silver Establishing The Order Quantity When The Amount Received Is Uncertain , 1976 .

[10]  Y. Sugimori,et al.  Toyota production system and Kanban system Materialization of just-in-time and respect-for-human system , 1977 .

[11]  E. Silver Inventory control under a probabilistic time-varying, demand pattern , 1978 .

[12]  Graham K. Rand,et al.  Decision Systems for Inventory Management and Production Planning , 1979 .

[13]  Ludo Gelders,et al.  Lot sizing under dynamic demand conditions: A review , 1984 .

[14]  Evan L. Porteus Numerical Comparisons of Inventory Policies for Periodic Review Systems , 1985, Oper. Res..

[15]  Stephen C. Graves,et al.  A Tactical Planning Model for a Job Shop , 1986, Oper. Res..

[16]  James H. Bookbinder,et al.  Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints , 1988 .

[17]  Urban Wemmerlöv,et al.  The behavior of lot-sizing procedures in the presence of forecast errors , 1989 .

[18]  Yigal Gerchak,et al.  The Structure of Periodic Review Policies in the Presence of Random Yield , 1990, Oper. Res..

[19]  Ford W. Harris,et al.  How Many Parts to Make at Once , 1990, Oper. Res..

[20]  E. J. Anderson,et al.  Deterministic Lotsizing Models for Production Planning , 1991 .

[21]  Michael A. Zazanis,et al.  Push and Pull Production Systems: Issues and Comparisons , 1992, Oper. Res..

[22]  Chris N. Potts,et al.  Integrating Scheduling with Batching and Lot-Sizing: A Review of Algorithms and Complexity , 1992 .

[23]  Paul H. Zipkin,et al.  Tandem Queues with Planned Inventories , 1992, Oper. Res..

[24]  Elsayed A. Elsayed,et al.  Analysis and control of production systems , 1993 .

[25]  S. Axsäter,et al.  Installation vs. echelon stock policies for multilevel inventory control , 1993 .

[26]  John A. Buzacott,et al.  Stochastic models of manufacturing systems , 1993 .

[27]  John A. Buzacott,et al.  Safety stock versus safety time in MRP controlled production systems , 1994 .

[28]  D. Heath,et al.  Modelling the evolution of demand forecasts with application to safety stock analysis in production distribution systems , 1994 .

[29]  Sven Axsäter,et al.  Multi-level production-inventory control: Material requirements planning or reorder point policies? , 1994 .

[30]  Maria Di Mascolo,et al.  On the design of generalized kanban control systems , 1995 .

[31]  Hau L. Lee,et al.  Lot Sizing with Random Yields: A Review , 1995, Oper. Res..

[32]  J. Klobas,et al.  The Graduate School of Management , 1995 .

[33]  Refik Gll,et al.  On the value of information in dynamic production/inventory problems under forecast evolution , 1996 .

[34]  A. Kimms Multi-Level Lot Sizing and Scheduling: Methods for Capacitated, Dynamic, and Deterministic Models , 1996 .

[35]  Hojung Shin,et al.  Manufacturing planning and control: The evolution of MRP and JIT integration , 1998, Eur. J. Oper. Res..

[36]  A. Federgruen,et al.  The Impact of Adding a Make-To-Order Item to a Make-To-Stock Production System , 1999 .

[37]  Stephen C. Graves,et al.  A Single-Item Inventory Model for a Nonstationary Demand Process , 1999, Manuf. Serv. Oper. Manag..

[38]  Sven Axsäter,et al.  Ranking of generalised multi-stage KANBAN policies , 1999, Eur. J. Oper. Res..

[39]  Nicolas Jonard,et al.  Measuring the performance of lot-sizing techniques in uncertain environments , 2000 .

[40]  Yves Dallery,et al.  A unified framework for pull control mechanisms in multi‐stage manufacturing systems , 2000, Ann. Oper. Res..

[41]  Christopher S. Tang,et al.  The Value of Information Sharing in a Two-Level Supply Chain , 2000 .

[42]  Yves Dallery,et al.  Extended kanban control system: combining kanban and base stock , 2000 .

[43]  Neil R. Ericsson Predictable Uncertainty in Economic Forecasting , 2000 .

[44]  V. Donk Make to stock or make to order: the decoupling point in the food processing industries , 2001 .

[45]  Evangelos Triantaphyllou,et al.  A study of the total inventory cost as a function of the reorder interval of some lot-sizing techniques used in material requirements planning systems , 2001 .

[46]  Alain Garreau,et al.  Management industriel et logistique , 2001 .

[47]  Lawrence M. Wein,et al.  Analysis of a Forecasting-Production-Inventory System with Stationary Demand , 2001, Manag. Sci..

[48]  Leopoldo Eduardo Cárdenas-Barrón,et al.  The economic production quantity (EPQ) with shortage derived algebraically , 2001 .

[49]  Yossi Aviv,et al.  Gaining Benefits from Joint Forecasting and Replenishment Processes: The Case of Auto-Correlated Demand , 2001, Manuf. Serv. Oper. Manag..

[50]  Yves Dallery,et al.  Integrating advance order information in make-to-stock production systems , 2002 .

[51]  Amy Hing-Ling Lau,et al.  A comparison of different methods for estimating the average inventory level in a (Q,R) system with backorders , 2002 .

[52]  Yves Dallery,et al.  Comparative modelling of multi-stage production-inventory control policies with lot sizing , 2003 .

[53]  Diwakar Gupta,et al.  Make-to-order, make-to-stock, or delay product differentiation? A common framework for modeling and analysis , 2004 .

[54]  Herbert E. Scarf,et al.  Optimal Policies for a Multi-Echelon Inventory Problem , 1960, Manag. Sci..

[55]  Vineet Padmanabhan,et al.  Comments on "Information Distortion in a Supply Chain: The Bullwhip Effect" , 1997, Manag. Sci..

[56]  Harvey M. Wagner,et al.  Dynamic Version of the Economic Lot Size Model , 2004, Manag. Sci..

[57]  Gino K. Yang,et al.  Technical note: The EOQ and EPQ models with shortages derived without derivatives , 2004 .

[58]  Wallace J. Hopp,et al.  To Pull or Not to Pull: What Is the Question? , 2004, Manuf. Serv. Oper. Manag..

[59]  Y. Dallery,et al.  Inventory Management : Forecast Based Approach vs. Standard Approach , 2005 .

[60]  Georghios P. Sphicas,et al.  EOQ and EPQ with linear and fixed backorder costs: Two cases identified and models analyzed without calculus , 2006 .

[61]  Z. Drezner,et al.  Quantifying the Bullwhip E ect in a Simple Supply Chain : The Impact of Forecasting , Lead Times and Information , 2007 .