Bacterial clay authigenesis: a common biogeochemical process

Abstract Transmission electron microscopic (TEM) analyses of freshwater biofilms and bacterial cells, grown in experimental culture, have shown that these microorganisms are commonly associated with fine-grained (Fe, Al)-silicates of variable composition. The inorganic phases develop in a predictable manner, beginning with the adsorption of cationic iron to anionic cellular surfaces, supersaturation of the proximal fluid with Fe3+, nucleation and precipitation of a precursor ferric hydroxide phase on the cell surface, followed by reaction with dissolved silica and aluminum and eventually the growth of an amorphous clay-like phase. Alternatively, colloidal species of (Fe, Al)-silicate composition may react directly with either the anionic cellular polymers or adsorbed iron, depending on their net charge. Over time, these hydrous precursors may dehydrate and convert to more stable crystalline phases. Because microbial biofilms are expansive and highly reactive surfaces at the sediment–water interface, coupled with their ability to bind soluble components and form solid inorganic phases, they should influence the chemical composition of the overlying aqueous microenvironment, and ultimately contribute to the makeup of river bottom sediment.

[1]  M. Fletcher,et al.  Bacterial Adhesion , 1985, Springer US.

[2]  L. Martinelli,et al.  Chemical and mineralogical composition of Amazon River floodplain sediments, Brazil , 1993 .

[3]  R. Murray,et al.  Uptake and retention of metals by cell walls of Bacillus subtilis , 1976, Journal of bacteriology.

[4]  W. G. Characklis Attached microbial growths—I. Attachment and growth , 1973 .

[5]  S. Altobelli,et al.  Experimental and conceptual studies on mass transport in biofilms , 1995 .

[6]  T. Beveridge,et al.  Metal Ions and Bacteria , 1989 .

[7]  George A. Parks,et al.  The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems , 1965 .

[8]  Z Lewandowski,et al.  Biofilms, the customized microniche , 1994, Journal of bacteriology.

[9]  W. Gates,et al.  Swelling Properties of Microbially Reduced Ferruginous Smectite , 1993 .

[10]  R. Doyle,et al.  Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall , 1980, Journal of bacteriology.

[11]  Terry J. Beveridge,et al.  Formation of short-range ordered aluminosilicates in the presence of a bacterial surface (Bacillus subtilis) and organic ligands , 1995 .

[12]  K. Marshall Studies by Microelectrophoretic and Microscopic Techniques of the Sorption of Illite and Montmorillonite to Rhizobia , 1969 .

[13]  K. Konhauser Bacterial iron biomineralisation in nature , 1997 .

[14]  F. G. Ferris,et al.  Continuum between Sorption and Precipitation of Fe(III) on Microbial Surfaces , 1998 .

[15]  P. Huang,et al.  Influence of selected organic ligands on the formation of allophane and imogolite , 1986 .

[16]  A. Stone Reactions of extracellular organic ligands with dissolved metal ions and mineral surfaces , 1997 .

[17]  W. Ghiorse Biology of iron- and manganese-depositing bacteria. , 1984, Annual review of microbiology.

[18]  D. Crerar,et al.  Silica diagenesis; II, General mechanisms , 1985 .

[19]  D. Lovley,et al.  Organic Matter Mineralization with Reduction of Ferric Iron in Anaerobic Sediments , 1986, Applied and environmental microbiology.

[20]  E. Leadbetter,et al.  Bacteria in Nature , 1989, Bacteria in Nature.

[21]  M. Amouric,et al.  Structure and Growth Mechanism of Glauconite as Seen by High-Resolution Transmission Electron Microscopy , 1985 .

[22]  Jillian F. Banfield,et al.  Geomicrobiology : interactions between microbes and minerals , 1997 .

[23]  D. Lovley,et al.  Rapid Assay for Microbially Reducible Ferric Iron in Aquatic Sediments , 1987, Applied and environmental microbiology.

[24]  J. Drever,et al.  The geochemistry of natural waters , 1988 .

[25]  T. Beveridge,et al.  Mineral Precipitation by Epilithic Biofilms in the Speed River, Ontario, Canada , 1994, Applied and environmental microbiology.

[26]  T. J. Beveridge,et al.  The Structure of Bacteria , 1989 .

[27]  Q. Fisher,et al.  Authigenic mineralization and detrital clay binding by freshwater biofilms: The Brahmani river, India , 1998 .

[28]  T. Beveridge,et al.  Formation of fine-grained metal and silicate precipitates on a bacterial surface (Bacillus subtilis) , 1994 .

[29]  J. A. Veen,et al.  Protection of Rhizobium by bentonite clay against predation by flagellates in liquid cultures , 1991 .

[30]  J. Hays,et al.  Initial Characterization of Hexose and Hexitol Phosphoenolpyruvate-Dependent Phosphotransferases of Staphylococcus aureus , 1977, Journal of bacteriology.

[31]  V. Farmer,et al.  Synthetic Allophanes Formed in Calcareous Environments: Nature, Conditions of Formation, and Transformations , 1991 .

[32]  Kazue Tazaki,et al.  Biomineralization of Layer Silicates and Hydrated Fe/Mn Oxides In Microbial Mats: An Electron Microscopical Study , 1997 .

[33]  M. Bayer,et al.  Polysaccharide capsule of Escherichia coli: microscope study of its size, structure, and sites of synthesis , 1977, Journal of bacteriology.

[34]  Barry T. Hart,et al.  Uptake of trace metals by sediments and suspended particulates: a review , 2004, Hydrobiologia.

[35]  F. G. Ferris,et al.  Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water , 1990 .

[36]  J. A. Veen,et al.  A determination of protective microhabitats for bacteria introduced into soil , 1991 .

[37]  A. L. Koch,et al.  Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis , 1993, Journal of bacteriology.

[38]  T. Beveridge,et al.  Iron-silica crystallite nucleation by bacteria in a geothermal sediment , 1986, Nature.

[39]  W. S. Fyfe,et al.  Metal fixation by bacterial cell walls , 1985 .

[40]  K. Konhauser,et al.  Multi-element chemistry of some Amazonian waters and soils , 1994 .

[41]  Stephen Mann,et al.  Molecular recognition in biomineralization , 1988, Nature.

[42]  G. Stotzky,et al.  Influence of clay minerals on microorganisms. I. Montmorillonite and kaolinite on bacteria. , 1966, Canadian Journal of Microbiology (print).

[43]  K. Konhauser,et al.  DIVERSITY OF IRON AND SILICA PRECIPITATION BY MICROBIAL MATS IN HYDROTHERMAL WATERS, ICELAND : IMPLICATIONS FOR PRECAMBRIAN IRON FORMATIONS , 1996 .

[44]  Jean-François Gaillard,et al.  Biogeochemical dynamics in aquatic sediments , 1996 .

[45]  Nita Sahai,et al.  Theoretical prediction of single-site surface-protonation equilibrium constants for oxides and silicates in water , 1996 .

[46]  J. Trevors,et al.  Bacterial survival in soil: Effect of clays and protozoa , 1993 .

[47]  Christian Défarge,et al.  On the appearance of cyanobacterial calcification in modern stromatolites , 1994 .

[48]  K. Beck,et al.  Organic and inorganic geochemistry of some coastal plain rivers of the southeastern United States , 1974 .

[49]  J. Dixon,et al.  Minerals in soil environments , 1990 .

[50]  R. Murray,et al.  Diagenesis of Metals Chemically Complexed to Bacteria: Laboratory Formation of Metal Phosphates, Sulfides, and Organic Condensates in Artificial Sediments , 1983, Applied and environmental microbiology.

[51]  Robert Axelrod,et al.  The Global Environment , 1999 .

[52]  T. Beveridge,et al.  Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment , 1987 .

[53]  T. Beveridge,et al.  Whiting events: Biogenic origin due to the photosynthetic activity of cyanobacterial picoplankton , 1997, Limnology and oceanography.

[54]  G. W. Bailey,et al.  Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution , 1989, Applied and environmental microbiology.

[55]  T. Beveridge,et al.  Effect of mineral substrate hardness on the population density of epilithic microorganisms in two Ontario rivers , 1989 .

[56]  G. Gadd,et al.  Metal-microbe interactions , 1989 .

[57]  K. Nealson,et al.  Reduction of Structural Fe(III) in Smectite by a Pure Culture of Shewanella Putrefaciens Strain MR-1 , 1996 .

[58]  Sánchez‐Navas,et al.  Bacterially‐mediated authigenesis of clays in phosphate stromatolites , 1998 .

[59]  J. Costerton,et al.  Microbial Biofilms , 2011 .

[60]  K. Konhauser,et al.  Trace element chemistry of major rivers in Orissa State, India , 1997 .

[61]  D. Fortin,et al.  Role of the bacterium Thiobacillus in the formation of silicates in acidic mine tailings , 1997 .

[62]  T J Beveridge,et al.  Mechanism of silicate binding to the bacterial cell wall in Bacillus subtilis , 1993, Journal of bacteriology.

[63]  P. Huang,et al.  Influence of Citric Acid on the Formation of Short-Range Ordered Aluminosilicates , 1985 .

[64]  R. Murray,et al.  Sites of metal deposition in the cell wall of Bacillus subtilis , 1980, Journal of bacteriology.

[65]  T. Beveridge The immobilization of soluble metals by bacterial walls , 1986 .

[66]  G. W. Bailey,et al.  Bacterial sorption of heavy metals , 1989, Applied and environmental microbiology.

[67]  Biological-mineralogical interactions , 1997 .

[68]  P. Kuikman,et al.  Dynamics of Rhizobium leguminosarum biovar trifolii introduced into soil; the effect of bentonite clay on predation by protozoa , 1988 .

[69]  Carl I. Steefel,et al.  Reactive transport in porous media , 1996 .

[70]  E. Tipping,et al.  The adsorption of aquatic humic substances by iron oxides , 1981 .

[71]  G. Geesey,et al.  Sessile bacteria: An important component of the microbial population in small mountain streams 1 , 1978 .

[72]  T. Beveridge,et al.  Metal sorption and mineral precipitation by bacteria in two Amazonian river systems: Rio Solimões and Rio Negro, Brazil , 1993 .

[73]  V. Farmer,et al.  Imogolite, a Hydrated Aluminium Silicate of Tubular Structure , 1972 .

[74]  T. Beveridge,et al.  The membrane-induced proton motive force influences the metal binding ability of Bacillus subtilis cell walls , 1992, Applied and environmental microbiology.

[75]  Humphrey John Moule Bowen,et al.  Environmental chemistry of the elements , 1979 .

[76]  E. Carstensen,et al.  Cation exchange in cell walls of gram-positive bacteria. , 1976, Canadian journal of microbiology.

[77]  C. Steefel,et al.  A new kinetic approach to modeling water-rock interaction: The role of nucleation, precursors, and Ostwald ripening , 1990 .

[78]  G. Stotzky Mechanisms of Adhesion to Clays, with Reference to Soil Systems , 1985 .

[79]  M. Goto,et al.  Clay Aerosols and Arctic Ice Algae , 1994 .

[80]  J. Banfield,et al.  Processes at minerals and surfaces with relevance to microorganisms and prebiotic synthesis , 1997 .

[81]  B. Little,et al.  Spatial relationships between bacteria and mineral surfaces , 1997 .

[82]  A. Edwards,et al.  Evidence for Buffering of Dissolved Silicon in Fresh Waters , 1973, Nature.

[83]  Jeremy B. Fein,et al.  A chemical equilibrium model for metal adsorption onto bacterial surfaces , 1997 .

[84]  R. Parfitt Allophane in New Zealand - a review , 1990 .

[85]  T. Beveridge,et al.  Physicochemical roles of soluble metal cations in the outer membrane of Escherichia coli K-12. , 1986, Canadian journal of microbiology.

[86]  John M. Zachara,et al.  Microbial Reduction of Crystalline Iron(III) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth , 1996 .

[87]  J. G. Jolley,et al.  Binding of Metal Ions by Extracellular Polymers of Biofilm Bacteria , 1988 .

[88]  K. Konhauser Diversity of bacterial iron mineralization , 1998 .

[89]  K. Marshall Interaction between colloidal montmorillonite and cells of Rhizobium species with different inogenic surfaces. , 1968, Biochimica et biophysica acta.

[90]  J. A. Veen,et al.  Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil , 1992 .