The role of master clock stability in quantum information processing

Experimentalists seeking to improve the coherent lifetimes of quantum bits have generally focused on mitigating decoherence mechanisms through, for example, improvements to qubit designs and materials, and system isolation from environmental perturbations. In the case of the phase degree of freedom in a quantum superposition, however, the coherence that must be preserved is not solely internal to the qubit, but rather necessarily includes that of the qubit relative to the ‘master clock’ (e.g., a local oscillator) that governs its control system. In this manuscript, we articulate the impact of instabilities in the master clock on qubit phase coherence and provide tools to calculate the contributions to qubit error arising from these processes. We first connect standard oscillator phase-noise metrics to their corresponding qubit dephasing spectral densities. We then use representative lab-grade and performance-grade oscillator specifications to calculate operational fidelity bounds on trapped-ion and superconducting qubits with relatively slow and fast operation times. We discuss the relevance of these bounds for quantum error correction in contemporary experiments and future large-scale quantum information systems, and consider potential means to improve master clock stability.

[1]  John M. Martinis,et al.  Decoherence of a superconducting qubit due to bias noise , 2003 .

[2]  Jens Koch,et al.  Life after charge noise: recent results with transmon qubits , 2008, Quantum Inf. Process..

[3]  Michael J. Biercuk,et al.  High-fidelity quantum control using ion crystals in a penning trap , 2009, Quantum Inf. Comput..

[4]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[5]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[6]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[7]  A. Doherty,et al.  Dynamical decoupling sequence construction as a filter-design problem , 2010, 1012.4262.

[8]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[10]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[11]  G. Kurizki,et al.  Unified theory of dynamically suppressed qubit decoherence in thermal baths. , 2004, Physical review letters.

[12]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[13]  G. Uhrig,et al.  Exact results on dynamical decoupling by π pulses in quantum information processes , 2008 .

[14]  Daniel A. Lidar,et al.  Empirical determination of dynamical decoupling operations , 2003 .

[15]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[16]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[17]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[18]  D. L. McAuslan,et al.  Reducing decoherence in optical and spin transitions in rare-earth-metal-ion-doped materials , 2012, 1201.4610.

[19]  J. Hartnett,et al.  Ultra-Low Vibration Pulse-Tube Cryocooler Stabilized Cryogenic Sapphire Oscillator With ${\hbox{10}}^{-16}$ Fractional Frequency Stability , 2010, IEEE Transactions on Microwave Theory and Techniques.

[20]  Daniel A. Lidar,et al.  Arbitrarily accurate dynamical control in open quantum systems. , 2009, Physical review letters.

[21]  Wen Yang,et al.  Preserving qubit coherence by dynamical decoupling , 2010, 1007.0623.

[22]  P. Roche,et al.  Macropinocytosis in phagocytes: regulation of MHC class-II-restricted antigen presentation in dendritic cells , 2015, Front. Physiol..

[23]  J. Gambetta,et al.  Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms , 2012, 1202.5533.

[24]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[25]  Michael J. Biercuk,et al.  Experimental Uhrig Dynamical Decoupling using Trapped Ions , 2009, 0902.2957.

[26]  Lorenza Viola,et al.  Robust dynamical decoupling of quantum systems with bounded controls. , 2003, Physical review letters.

[27]  D. Vitali,et al.  Using parity kicks for decoherence control , 1998, quant-ph/9808055.

[28]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[29]  N. Linke,et al.  High-Fidelity Preparation, Gates, Memory, and Readout of a Trapped-Ion Quantum Bit. , 2014, Physical review letters.

[30]  D. A. Howe,et al.  Characterization of Clocks and Oscillators , 2017 .

[31]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[32]  H. Lu,et al.  Cryogenic Control Architecture for Large-Scale Quantum Computing , 2014, 1409.2202.

[33]  W. Oliver,et al.  Materials in superconducting quantum bits , 2013 .

[34]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[35]  Lorenza Viola,et al.  Towards optimized suppression of dephasing in systems subject to pulse timing constraints , 2010 .

[36]  G Kurizki,et al.  Universal dynamical control of quantum mechanical decay: modulation of the coupling to the continuum. , 2001, Physical review letters.

[37]  H. Ball,et al.  Experimental noise filtering by quantum control , 2014, Nature Physics.

[38]  Wang Yao,et al.  Restoring coherence lost to a slow interacting mesoscopic spin bath. , 2007, Physical review letters.

[39]  Daniel A. Lidar,et al.  Optimal dynamical decoherence control of a qubit. , 2008, Physical review letters.

[40]  Michael J. Biercuk,et al.  Effect of noise correlations on randomized benchmarking , 2015, 1504.05307.

[41]  J. Rutman Characterization of phase and frequency instabilities in precision frequency sources: Fifteen years of progress , 1978, Proceedings of the IEEE.

[42]  David Reilly,et al.  Engineering the quantum-classical interface of solid-state qubits , 2015, npj Quantum Information.

[43]  Kaveh Khodjasteh,et al.  Dynamically error-corrected gates for universal quantum computation. , 2008, Physical review letters.

[44]  S. Olmschenk,et al.  Manipulation and detection of a trapped Yb+ hyperfine qubit , 2007, 0708.0657.

[45]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[46]  Matthew Sellars,et al.  Minimizing Zeeman sensitivity on optical and hyperfine transitions in EuCl3·6H2O to extend coherence times , 2013 .

[47]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[48]  M. Biercuk,et al.  Arbitrary quantum control of qubits in the presence of universal noise , 2012, 1211.1163.

[49]  Kaveh Khodjasteh,et al.  Dynamical Quantum Error Correction of Unitary Operations with Bounded Controls , 2009, 0906.0525.

[50]  H. Ball,et al.  Experimental bath engineering for quantitative studies of quantum control , 2014, 1403.4632.

[51]  Michael J. Biercuk,et al.  Walsh-synthesized noise filters for quantum logic , 2015 .

[52]  Frederic T. Chong,et al.  A Practical Architecture for Reliable Quantum Computers , 2002, Computer.

[53]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[54]  Todd Green,et al.  High-order noise filtering in nontrivial quantum logic gates. , 2011, Physical review letters.

[55]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[56]  Yasunobu Nakamura,et al.  Spectroscopy of low-frequency noise and its temperature dependence in a superconducting qubit , 2012, 1201.5665.

[57]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[58]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.