Quantum Dot Surface Chemistry: Ligand Effects and Electron Transfer Reactions

With the increased interest in quantum dot sensitized solar cells (QDSCs) there comes a need to better understand how surface modification of quantum dots (QDs) can affect the excited state dynamics of QDs, electron transfer at the QD–metal oxide (MO) interface, and overall photoconversion efficiency of QDSCs. We have monitored the surface modification of solution based QDs via the steady state absorption and emission characteristics of colloidal CdSe passivated with β-alanine (β-Ala). The trap-remediating nature of the β-Ala molecule, arising from the Lewis basicity of the amine group, is realized from the hypsochromic shifts seen in excitonic absorption and emission bands as well as an increase in fluorescence quantum yield. Transient absorption measurements of CdSe–TiO2 films prepared with and without β-Ala as a linker molecule further reveal the role of the surface modifier in influencing excited state electron transfer processes. Electron transfer at this interface was found to be dependent on the me...

[1]  P. Kamat Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics. , 2013, The journal of physical chemistry letters.

[2]  E. Weiss,et al.  Optical Properties of Strongly Coupled Quantum Dot-Ligand Systems. , 2013, The journal of physical chemistry letters.

[3]  R. Hamers,et al.  Influence of Hole-Sequestering Ligands on the Photostability of CdSe Quantum Dots , 2013 .

[4]  E. Weiss,et al.  Control of exciton confinement in quantum dot-organic complexes through energetic alignment of interfacial orbitals. , 2013, Nano letters.

[5]  Prashant V Kamat,et al.  Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides. , 2013, Journal of the American Chemical Society.

[6]  V. Chaban,et al.  Covalent Linking Greatly Enhances Photoinduced Electron Transfer in Fullerene-Quantum Dot Nanocomposites: Time-Domain Ab Initio Study. , 2013, The journal of physical chemistry letters.

[7]  Arie Zaban,et al.  All-Oxide Photovoltaics. , 2012, The journal of physical chemistry letters.

[8]  Hedi Mattoussi,et al.  Photoinduced phase transfer of luminescent quantum dots to polar and aqueous media. , 2012, Journal of the American Chemical Society.

[9]  Timothy F. O'Connor,et al.  Inorganic Solids of CdSe Nanocrystals Exhibiting High Emission Quantum Yield , 2012 .

[10]  P. Kamat,et al.  Photoinduced Surface Oxidation and Its Effect on the Exciton Dynamics of CdSe Quantum Dots , 2012 .

[11]  Prashant V Kamat,et al.  Synchronized energy and electron transfer processes in covalently linked CdSe-squaraine dye-TiO2 light harvesting assembly. , 2012, ACS nano.

[12]  Linfeng Hu,et al.  Growth and Device Application of CdSe Nanostructures , 2012 .

[13]  Prashant V Kamat,et al.  Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. , 2012, Journal of the American Chemical Society.

[14]  A. Rogach,et al.  In Situ versus ex Situ Assembly of Aqueous-Based Thioacid Capped CdSe Nanocrystals within Mesoporous TiO2 Films for Quantum Dot Sensitized Solar Cells , 2012 .

[15]  E. Weiss,et al.  Colloidal Quantum Dots: Think Outside the (Particle-in-a-)Box , 2012 .

[16]  Luping Yu,et al.  How Far Can Polymer Solar Cells Go? In Need of a Synergistic Approach , 2011 .

[17]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[18]  Laurence M. Peter,et al.  The Grätzel Cell: Where Next? , 2011 .

[19]  J. Parisi,et al.  Physical Origin of the Impact of Different Nanocrystal Surface Modifications on the Performance of CdSe/P3HT Hybrid Solar Cells , 2011 .

[20]  P. Kamat,et al.  Tracking the Adsorption and Electron Injection Rates of CdSe Quantum Dots on TiO2: Linked versus Direct Attachment , 2011 .

[21]  F. Wise,et al.  Control of electron transfer from lead-salt nanocrystals to TiO₂. , 2011, Nano letters.

[22]  Qiang Zhao,et al.  Binding of phosphonic acids to CdSe quantum dots : a solution NMR study , 2011 .

[23]  P. Frantsuzov,et al.  Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles , 2010, Proceedings of the National Academy of Sciences.

[24]  Prashant V Kamat,et al.  Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. , 2010, Chemical reviews.

[25]  I. Willner,et al.  Optical, electrical and surface plasmon resonance methods for detecting telomerase activity. , 2010, Analytical chemistry.

[26]  J. Bisquert,et al.  Modeling high-efficiency quantum dot sensitized solar cells. , 2010, ACS nano.

[27]  G. Scholes,et al.  Charge Separation and Recombination in CdTe/CdSe Core/Shell Nanocrystals as a Function of Shell Coverage: Probing the Onset of the Quasi Type-II Regime , 2010 .

[28]  David F. Watson Linker-Assisted Assembly and Interfacial Electron-Transfer Reactivity of Quantum Dot−Substrate Architectures , 2010 .

[29]  D. Sarma,et al.  Origin of the Enhanced Photoluminescence from Semiconductor CdSeS Nanocrystals , 2010 .

[30]  Md. K. Nazeeruddin,et al.  High-performance nanostructured inorganic-organic heterojunction solar cells. , 2010, Nano letters.

[31]  P. Kamat,et al.  Tuning the emission of CdSe quantum dots by controlled trap enhancement. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[32]  Gemma C. Solomon,et al.  Chemical control of the photoluminescence of CdSe quantum dot-organic complexes with a series of para-substituted aniline ligands. , 2010, Journal of the American Chemical Society.

[33]  Soohyun Kim,et al.  Efficient electron transfer in functional assemblies of pyridine-modified NQDs on SWNTs. , 2010, ACS nano.

[34]  J. Bisquert,et al.  Improving the performance of colloidal quantum-dot-sensitized solar cells , 2009, Nanotechnology.

[35]  V. Bulović,et al.  Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. , 2009, Nano letters.

[36]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[37]  Yongfang Li,et al.  Bright, multicoloured light-emitting diodes based on quantum dots , 2007 .

[38]  Masaru Kuno,et al.  Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[39]  Antonio Luque,et al.  Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands , 2007 .

[40]  P. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion , 2007 .

[41]  S. Nie,et al.  A systematic examination of surface coatings on the optical and chemical properties of semiconductor quantum dots. , 2006, Physical chemistry chemical physics : PCCP.

[42]  A. Jen,et al.  Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. , 2006, Nano letters.

[43]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[44]  Alf Mews,et al.  Synthesis and characterization of highly luminescent CdSe-core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. , 2005, Journal of the American Chemical Society.

[45]  Zhiyong Tang,et al.  One‐Dimensional Assemblies of Nanoparticles: Preparation, Properties, and Promise , 2005 .

[46]  Royce W Murray,et al.  Ligand effects on optical properties of CdSe nanocrystals. , 2005, The journal of physical chemistry. B.

[47]  M. El-Sayed,et al.  Chemistry and properties of nanocrystals of different shapes. , 2005, Chemical reviews.

[48]  Mingyuan Gao,et al.  Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core−Shell Structure , 2004 .

[49]  Elena Galoppini,et al.  Linkers for anchoring sensitizers to semiconductor nanoparticles , 2004 .

[50]  Xiaogang Peng,et al.  Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals , 2003 .

[51]  Laura A. Swafford,et al.  Semiconductor Nanocrystals: A Powerful Visual Aid for Introducing the Particle in a Box , 2002 .

[52]  A. Nozik Quantum dot solar cells , 2002 .

[53]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[54]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[55]  T. Kuech,et al.  Surface Chemistry of Prototypical Bulk II-VI and III-V Semiconductors and Implications for Chemical Sensing. , 2000, Chemical reviews.

[56]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[57]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[58]  M. Bawendi,et al.  The band edge luminescence of surface modified CdSe nanocrystallites: Probing the luminescing state , 1997 .

[59]  Martin Moskovits,et al.  Nonlithographic nano-wire arrays: fabrication, physics, and device applications , 1996 .

[60]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[61]  B. Parkinson,et al.  Experimental time scale of Gerischer's distribution curves for electron-transfer reactions at semiconductor electrodes , 1990 .

[62]  M. Grätzel,et al.  Interfacial electron transfer in colloidal metal and semiconductor dispersions and photodecomposition of water , 1986 .

[63]  R. Memming Electron transfer processs with excited molecules at semiconductor electrodes , 1984 .

[64]  George A. Reynolds,et al.  New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers , 1975 .