Stable and unstable sets for damped nonlinear wave equations with variable exponent sources

In this paper, we study a class of nonlinear wave equations with variable exponent sources. By introducing a family of potential wells, we first prove the global existence of solutions with initial data in the potential wells and the finite time blow-up for solutions starting in the unstable sets. The boundedness and asymptotic behavior of global solutions are also concerned. Finally, we obtain the finite time blow-up with high energy initial data.

[1]  Howard A. Levine,et al.  Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations , 1974 .

[2]  D. Sattinger,et al.  Saddle points and instability of nonlinear hyperbolic equations , 1975 .

[3]  Jiří Rákosník,et al.  Sobolev embeddings with variable exponent , 2000 .

[4]  J. Serrin,et al.  Global Nonexistence for Abstract Evolution Equations with Positive Initial Energy , 1998 .

[5]  Howard A. Levine,et al.  Global Nonexistence Theorems for Quasilinear Evolution Equations with Dissipation , 1997 .

[6]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[7]  J. Esquivel-Avila The dynamics of a nonlinear wave equation , 2003 .

[8]  Exponential decay for solutions to semilinear damped wave equation , 2011 .

[9]  Ryo Ikehata,et al.  Stable and unstable sets for evolution equations of parabolic and hyperbolic type , 1996 .

[10]  D. Sattinger Stability of nonlinear hyperbolic equations , 1968 .

[11]  Ryo Ikehata,et al.  Some remarks on the wave equations with nonlinear damping and source terms , 1996 .

[12]  L. Diening,et al.  C1,α-regularity for electrorheological fluids in two dimensions , 2007 .

[13]  B. Straughan Further global nonexistence theorems for abstract nonlinear wave equations , 1975 .

[14]  Xianling Fan,et al.  Sobolev Embedding Theorems for Spaces Wk, p(x)(Ω) , 2001 .

[15]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[16]  John M. Ball,et al.  REMARKS ON BLOW-UP AND NONEXISTENCE THEOREMS FOR NONLINEAR EVOLUTION EQUATIONS , 1977 .

[17]  D. Edmunds,et al.  Sobolev Embeddings with Variable Exponent, II , 2002 .

[18]  S. Antontsev,et al.  Wave equation with -Laplacian and damping term: Blow-up of solutions , 2011 .

[19]  Wenjie Gao,et al.  Blow-up of solutions to quasilinear hyperbolic equations with p(x,t)-Laplacian and positive initial energy , 2014 .

[20]  Ala A. Talahmeh,et al.  On wave equation: review and recent results , 2018 .

[21]  Julian Musielak,et al.  Orlicz Spaces and Modular Spaces , 1983 .

[22]  Jiří Rákosník,et al.  On spaces $L^{p(x)}$ and $W^{k, p(x)}$ , 1991 .

[23]  Michael Ruzicka,et al.  Existence of local strong solutions for motions of electrorheological fluids in three dimensions , 2007, Comput. Math. Appl..

[24]  K. Ono On Global Existence, Asymptotic Stability and Blowing Up of Solutions for Some Degenerate Non‐linear Wave Equations of Kirchhoff Type with a Strong Dissipation , 1997 .

[25]  Marco Squassina,et al.  Global solutions and finite time blow up for damped semilinear wave equations ? ? The first author w , 2006 .

[26]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[27]  Howard A. Levine,et al.  Some Additional Remarks on the Nonexistence of Global Solutions to Nonlinear Wave Equations , 1974 .

[28]  Vladimir Georgiev,et al.  Existence of a Solution of the Wave Equation with Nonlinear Damping and Source Terms , 1994 .

[29]  Masayoshi Tsutsumi,et al.  Some nonlinear evolution equations of second order , 1971 .