Clinical Applications of Retinal Imaging with Adaptive Optics

Before getting into the clinical utility of adaptive optics imaging technology, it is prudent to first review the basic principles of imaging with adaptive optics. With conventional optical imaging, the major factor limiting the achievable resolution is the eye’s monochromatic aberrations, which are due to imperfections in the optics of the eye. These wavefront aberrations can be separated mathematically into shapes described by low order polynomials (defocus and astigmatism) and higher order polynomials (e.g. coma and trefoil). Although lower order aberrations can be effectively corrected using spectacles or contact lenses, the higher order aberrations cannot over a large field of view. Their effect on visual function is not typically severe; however, higher order aberrations interfere with high-resolution retinal imaging. Ophthalmic adaptive optics systems are designed to measure and correct for these higher-order aberrations, and can provide image resolution that is limited only by the pupil diameter of the eye, the axial length of the eye, and the wavelength of light. As shown in Figure 1, ophthalmic adaptive optics imaging systems have three main components—a wavefront sensor (typically a Shack-Hartmann design, for measuring the eye’s aberrations), a corrective element (typically a deformable mirror, for correcting the aberrations), and an imaging device (typically a charge-coupled device [CCD] or photomultiplier tube). These design principles are not absolute, and alternative approaches that do not use a wavefront sensor or that use multiple corrective elements have been demonstrated. Nevertheless, the unifying feature of adaptive optics imaging systems is mitigation of the eye’s aberrations to achieve nearly diffraction-limited imaging. These imaging systems have so far taken the form of an adaptive optics fundus camera, an adaptive optics scanning laser ophthalmoscope, or an adaptive optics optical coherence tomograph (OCT).

[1]  Austin Roorda,et al.  Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[2]  András M Komáromy,et al.  Gene therapy rescues cone function in congenital achromatopsia. , 2010, Human molecular genetics.

[3]  Livia S. Carvalho,et al.  Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy , 2011, Human molecular genetics.

[4]  David R. Williams,et al.  Images of photoreceptors in living primate eyes using adaptive optics two-photon ophthalmoscopy , 2010, Biomedical optics express.

[5]  Austin Roorda,et al.  Pulsatility of parafoveal capillary leukocytes. , 2009, Experimental eye research.

[6]  David Williams,et al.  Deletion of the X-linked opsin gene array locus control region (LCR) results in disruption of the cone mosaic , 2010, Vision Research.

[7]  Barbara Lamory,et al.  In vivo evaluation of photoreceptor mosaic in type 2 idiopathic macular telangiectasia using adaptive optics , 2011, Acta ophthalmologica.

[8]  D. M. Tait,et al.  Unusual adaptive optics findings in a patient with bilateral maculopathy. , 2010, Archives of ophthalmology.

[9]  Chaohong Li,et al.  Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging. , 2011, Investigative ophthalmology & visual science.

[10]  Ravi S. Jonnal,et al.  Imaging retinal nerve fiber bundles using optical coherence tomography with adaptive optics , 2011, Vision Research.

[11]  A. Roorda,et al.  Intrinsic signals from human cone photoreceptors. , 2008, Investigative ophthalmology & visual science.

[12]  Austin Roorda,et al.  Adaptive optics for studying visual function: a comprehensive review. , 2011, Journal of vision.

[13]  R. Zawadzki,et al.  Microstructural Abnormalities Revealed by High Resolution Imaging Systems in Central Macular Arteriovenous Malformation. , 2010, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[14]  A. Roorda,et al.  High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. , 2007, Investigative ophthalmology & visual science.

[15]  D. M. Tait,et al.  Arrested development: High-resolution imaging of foveal morphology in albinism , 2010, Vision Research.

[16]  Heidi Hofer,et al.  Organization of the Human Trichromatic Cone Mosaic , 2003, The Journal of Neuroscience.

[17]  Vaegan,et al.  Swelling and loss of photoreceptors in chronic human and experimental glaucomas. , 2000, Archives of ophthalmology.

[18]  D. Hunt,et al.  The cone dysfunction syndromes , 2004, British Journal of Ophthalmology.

[19]  David Williams,et al.  Color-deficient cone mosaics associated with Xq28 opsin mutations: A stop codon versus gene deletions , 2010, Vision Research.

[20]  A. Tsujikawa,et al.  High-resolution photoreceptor imaging in idiopathic macular telangiectasia type 2 using adaptive optics scanning laser ophthalmoscopy. , 2011, Investigative ophthalmology & visual science.

[21]  David Williams,et al.  The reflectance of single cones in the living human eye. , 2002, Investigative ophthalmology & visual science.

[22]  A Roorda,et al.  Advances in imaging of Stargardt disease. , 2010, Advances in experimental medicine and biology.

[23]  Larry N. Thibos,et al.  The mechanisms of vision loss associated with a cotton wool spot , 2009, Vision Research.

[24]  F. Proudlock,et al.  The functional significance of foveal abnormalities in albinism measured using spectral-domain optical coherence tomography. , 2011, Ophthalmology.

[25]  David Williams,et al.  In vivo imaging of the photoreceptor mosaic of a rod monochromat , 2008, Vision Research.

[26]  Austin Roorda,et al.  Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[27]  Toco Y P Chui,et al.  Adaptive-optics imaging of human cone photoreceptor distribution. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  David Williams,et al.  Retinal crystals in type 2 idiopathic macular telangiectasia. , 2010, Ophthalmology (Rochester, Minn.).

[29]  Jungtae Rha,et al.  Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT. , 2010, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[30]  Robert J Zawadzki,et al.  Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging , 2010, British Journal of Ophthalmology.

[31]  Donald T. Miller,et al.  In vivo functional imaging of human cone photoreceptors. , 2007, Optics express.

[32]  J. Porter,et al.  Wavefront sensorless adaptive optics ophthalmoscopy in the human eye , 2011, Optics express.

[33]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[34]  David Williams,et al.  Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  W. Drexler,et al.  Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. , 2009, Optics express.

[36]  Ravi S. Jonnal,et al.  Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics , 2011, Biomedical optics express.

[37]  Jungtae Rha,et al.  Integrity of the cone photoreceptor mosaic in oligocone trichromacy. , 2011, Investigative ophthalmology & visual science.

[38]  T. Mihashi,et al.  In Vivo Measurements of Cone Photoreceptor Spacing in Myopic Eyes from Images Obtained by an Adaptive Optics Fundus Camera , 2007, Japanese Journal of Ophthalmology.

[39]  Robert J Zawadzki,et al.  Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction. , 2008, Optics express.

[40]  Robert J Zawadzki,et al.  Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies. , 2008, Investigative ophthalmology & visual science.

[41]  P. Artal,et al.  Adaptive-optics ultrahigh-resolution optical coherence tomography. , 2004, Optics letters.

[42]  B. Lujan,et al.  Cone photoreceptor abnormalities correlate with vision loss in patients with Stargardt disease. , 2011, Investigative ophthalmology & visual science.

[43]  Dennis P. Han,et al.  Spectral-domain optical coherence tomography and adaptive optics may detect hydroxychloroquine retinal toxicity before symptomatic vision loss. , 2009, Transactions of the American Ophthalmological Society.

[44]  Maureen Neitz,et al.  Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  Ashavini M. Pavaskar,et al.  Spatial and temporal variation of rod photoreceptor reflectance in the human retina , 2011, Biomedical optics express.

[46]  Austin Roorda,et al.  Cone structure in retinal degeneration associated with mutations in the peripherin/RDS gene. , 2011, Investigative ophthalmology & visual science.

[47]  Stephen A. Burns,et al.  Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm , 2011, Biomedical optics express.

[48]  Austin Roorda,et al.  Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery , 2010, Optics express.

[49]  A. Dubra,et al.  Subclinical photoreceptor disruption in response to severe head trauma. , 2012, Archives of ophthalmology.

[50]  D. Albert,et al.  Human Albinism: Light and Electron Microscopy Study , 1978 .

[51]  David R Williams,et al.  In vivo imaging of the fine structure of rhodamine-labeled macaque retinal ganglion cells. , 2008, Investigative ophthalmology & visual science.

[52]  P. Artal,et al.  Visual effect of the combined correction of spherical and longitudinal chromatic aberrations. , 2010, Optics express.

[53]  A. Roorda,et al.  Heterogeneous patterns of tissue injury in NARP syndrome , 2010, Journal of Neurology.

[54]  Jessica I. Wolfing,et al.  Retinal microscotomas revealed with adaptive-optics microflashes. , 2006, Investigative ophthalmology & visual science.

[55]  Robert J Zawadzki,et al.  Visual insignificance of the foveal pit: reassessment of foveal hypoplasia as fovea plana. , 2008, Archives of ophthalmology.

[56]  N. Strouthidis,et al.  Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. , 2011, Investigative ophthalmology & visual science.

[57]  Austin Roorda,et al.  Retinally stabilized cone-targeted stimulus delivery. , 2007, Optics express.

[58]  Austin Roorda,et al.  Noninvasive visualization and analysis of parafoveal capillaries in humans. , 2010, Investigative ophthalmology & visual science.

[59]  Y. Tano,et al.  Photoreceptor images of normal eyes and of eyes with macular dystrophy obtained in vivo with an adaptive optics fundus camera , 2008, Japanese Journal of Ophthalmology.

[60]  A. Roorda,et al.  Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[61]  Lawrence C. Sincich,et al.  Resolving Single Cone Inputs to Visual Receptive Fields , 2009, Nature Neuroscience.

[62]  J L Keltner,et al.  Outer retinal abnormalities associated with inner retinal pathology in nonglaucomatous and glaucomatous optic neuropathies , 2011, Eye.

[63]  Mette Owner-Petersen,et al.  Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics. , 2011, Investigative ophthalmology & visual science.

[64]  A. Tsujikawa,et al.  High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy. , 2010, Ophthalmology.

[65]  Jungtae Rha,et al.  Adaptive optics flood-illumination camera for high speed retinal imaging. , 2003, Optics express.

[66]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[67]  Takashi Fujikado,et al.  Adaptive optics fundus camera to examine localized changes in the photoreceptor layer of the fovea. , 2008, Ophthalmology.

[68]  W. Hauswirth,et al.  Restoration of cone vision in a mouse model of achromatopsia , 2007, Nature Medicine.

[69]  G. M. Morris,et al.  Images of cone photoreceptors in the living human eye , 1996, Vision Research.

[70]  Austin Roorda,et al.  Adaptive optics scanning laser ophthalmoscopy images in a family with the mitochondrial DNA T8993C mutation. , 2009, Investigative ophthalmology & visual science.

[71]  David Williams,et al.  Different sensations from cones with the same photopigment. , 2005, Journal of vision.

[72]  Scot S. Olivier,et al.  Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging , 2011, Biomedical optics express.

[73]  D. M. Tait,et al.  Spectral domain optical coherence tomography and adaptive optics: imaging photoreceptor layer morphology to interpret preclinical phenotypes. , 2010, Advances in experimental medicine and biology.

[74]  John Conrath,et al.  Foveal damage in habitual poppers users. , 2011, Archives of ophthalmology.

[75]  J. Sahel,et al.  Cellular-resolution in vivo imaging of the feline retina using adaptive optics: preliminary results. , 2010, Veterinary ophthalmology.

[76]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[77]  Toco Y P Chui,et al.  Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels. , 2011, Investigative ophthalmology & visual science.

[78]  Daniel X Hammer,et al.  Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[79]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[80]  David R Williams,et al.  In vivo imaging of microscopic structures in the rat retina. , 2009, Investigative ophthalmology & visual science.

[81]  John S Werner,et al.  In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function. , 2006, Investigative ophthalmology & visual science.

[82]  Stephen A Burns,et al.  Individual variations in human cone photoreceptor packing density: variations with refractive error. , 2008, Investigative ophthalmology & visual science.

[83]  J. Downs,et al.  Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. , 2011, Investigative ophthalmology & visual science.

[84]  A. Dubra,et al.  Photoreceptor structure and function in patients with congenital achromatopsia. , 2011, Investigative ophthalmology & visual science.

[85]  Carmen A. Puliafito,et al.  Adaptive optics photoacoustic microscopy , 2010, Optics express.

[86]  J. Sahel,et al.  Topography of Patchy Retinal Whitening during Acute Perfused Retinal Vein Occlusion by Optical Coherence Tomography and Adaptive Optics Fundus Imaging , 2011, European journal of ophthalmology.

[87]  P. Lennie,et al.  Packing arrangement of the three cone classes in primate retina , 2001, Vision Research.

[88]  Y. Tano,et al.  Imaging of titanium:sapphire laser retinal injury by adaptive optics fundus imaging and Fourier-domain optical coherence tomography. , 2009, American journal of ophthalmology.

[89]  Robert J Zawadzki,et al.  Fourier-Domain Optical Coherence Tomography and Adaptive Optics Reveal Nerve Fiber Layer Loss and Photoreceptor Changes in a Patient With Optic Nerve Drusen , 2008, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[90]  Katherine E. Talcott,et al.  Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. , 2011, Investigative ophthalmology & visual science.

[91]  Masanori Hangai,et al.  High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy. , 2011, Ophthalmology.

[92]  Jungtae Rha,et al.  Variable optical activation of human cone photoreceptors visualized using a short coherence light source. , 2009, Optics letters.

[93]  Julia S. Kroisamer,et al.  Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT , 2010, Biomedical optics express.

[94]  Krishnakumar Venkateswaran,et al.  Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope. , 2005, Applied optics.

[95]  Robert N Weinreb,et al.  Visualization of the lamina cribrosa using enhanced depth imaging spectral-domain optical coherence tomography. , 2011, American journal of ophthalmology.

[96]  E. Rossi,et al.  The relationship between visual resolution and cone spacing in the human fovea , 2009, Nature Neuroscience.

[97]  David R. Williams,et al.  Recent Advances in Retinal Imaging With Adaptive Optics , 2005 .

[98]  Kaccie Y. Li,et al.  Intersubject variability of foveal cone photoreceptor density in relation to eye length. , 2010, Investigative ophthalmology & visual science.

[99]  Steven M. Jones,et al.  High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. , 2006, Optics express.

[100]  David Williams,et al.  Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[101]  Jessica I. Wolfing,et al.  High-resolution retinal imaging of cone-rod dystrophy. , 2006, Ophthalmology.

[102]  Jennifer J. Hunter,et al.  Imaging retinal mosaics in the living eye , 2011, Eye.

[103]  Jessica I. W. Morgan,et al.  In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. , 2009, Investigative ophthalmology & visual science.

[104]  Stephen A Burns,et al.  In vivo fluorescent imaging of the mouse retina using adaptive optics. , 2007, Optics letters.

[105]  Steven M. Jones,et al.  Retinal imaging with adaptive optics scanning laser ophthalmoscopy in unexplained central ring scotoma. , 2008, Archives of ophthalmology.

[106]  Takashi Fujikado,et al.  Detection of photoreceptor disruption by adaptive optics fundus imaging and Fourier-domain optical coherence tomography in eyes with occult macular dystrophy , 2011, Clinical ophthalmology.

[107]  David Williams,et al.  Optical fiber properties of individual human cones. , 2002, Journal of vision.

[108]  Chaohong Li,et al.  A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system , 2010, Optics express.

[109]  Bernard P. Gee,et al.  In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells. , 2006, Optics express.

[110]  H. Wilson,et al.  Albino spatial vision as an instance of arrested visual development , 1988, Vision Research.

[111]  David Williams,et al.  Visual performance after correcting the monochromatic and chromatic aberrations of the eye. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[112]  Jessica I. W. Morgan,et al.  Cone photoreceptor mosaic disruption associated with Cys203Arg mutation in the M-cone opsin , 2009, Proceedings of the National Academy of Sciences.

[113]  A. Swaroop,et al.  High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. , 2007, Investigative ophthalmology & visual science.

[114]  R W Guillery,et al.  Abnormal central visual pathways in the brain of an albino green monkey (Cercopithecus aethiops) , 1984, The Journal of comparative neurology.