Beyond Markov Logic: Efficient Mining of Prediction Rules in Large Graphs

Graph representations of large knowledge bases may comprise billions of edges. Usually built upon human-generated ontologies, several knowledge bases do not feature declared ontological rules and are far from being complete. Current rule mining approaches rely on schemata or store the graph in-memory, which can be unfeasible for large graphs. In this paper, we introduce HornConcerto, an algorithm to discover Horn clauses in large graphs without the need of a schema. Using a standard fact-based confidence score, we can mine close Horn rules having an arbitrary body size. We show that our method can outperform existing approaches in terms of runtime and memory consumption and mine high-quality rules for the link prediction task, achieving state-of-the-art results on a widely-used benchmark. Moreover, we find that rules alone can perform inference significantly faster than embedding-based methods and achieve accuracies on link prediction comparable to resource-demanding approaches such as Markov Logic Networks.

[1]  Guillaume Bouchard,et al.  Complex Embeddings for Simple Link Prediction , 2016, ICML.

[2]  Jens Lehmann,et al.  Inductive Lexical Learning of Class Expressions , 2014, EKAW.

[3]  Heiner Stuckenschmidt,et al.  RockIt: Exploiting Parallelism and Symmetry for MAP Inference in Statistical Relational Models , 2013, AAAI.

[4]  Marcelo Arenas,et al.  Semantics and Complexity of SPARQL , 2006, International Semantic Web Conference.

[5]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[6]  Daisy Zhe Wang,et al.  Ontological Pathfinding , 2016, SIGMOD Conference.

[7]  Michael Beetz,et al.  Soft Evidential Update via Markov Chain Monte Carlo Inference , 2010, KI.

[8]  Daisy Zhe Wang,et al.  Knowledge expansion over probabilistic knowledge bases , 2014, SIGMOD Conference.

[9]  Jens Lehmann,et al.  DBpedia - A crystallization point for the Web of Data , 2009, J. Web Semant..

[10]  Amit P. Sheth,et al.  Semantic Services, Interoperability and Web Applications - Emerging Concepts , 2011, Semantic Services, Interoperability and Web Applications.

[11]  Sebastian Riedel Improving the Accuracy and Efficiency of MAP Inference for Markov Logic , 2008, UAI.

[12]  Luc Dehaspe,et al.  Discovery of relational association rules , 2001 .

[13]  Christopher Ré,et al.  Tuffy: Scaling up Statistical Inference in Markov Logic Networks using an RDBMS , 2011, Proc. VLDB Endow..

[14]  Foster Provost,et al.  NetKit-SRL: A Toolkit for Network Learning and Inference , 2005 .

[15]  Jason Weston,et al.  Translating Embeddings for Modeling Multi-relational Data , 2013, NIPS.

[16]  Yiming Yang,et al.  Analogical Inference for Multi-relational Embeddings , 2017, ICML.

[17]  Lorenzo Rosasco,et al.  Holographic Embeddings of Knowledge Graphs , 2015, AAAI.

[18]  Fabian M. Suchanek,et al.  AMIE: association rule mining under incomplete evidence in ontological knowledge bases , 2013, WWW.

[19]  Sören Auer,et al.  SINA: Semantic interpretation of user queries for question answering on interlinked data , 2015, J. Web Semant..

[20]  Rudolf Kadlec,et al.  Knowledge Base Completion: Baselines Strike Back , 2017, Rep4NLP@ACL.

[21]  Beat Wüthrich Probabilistic Knowledge Bases , 1995, IEEE Trans. Knowl. Data Eng..

[22]  Tim Berners-Lee,et al.  Linked Data - The Story So Far , 2009, Int. J. Semantic Web Inf. Syst..

[23]  Jens Lehmann,et al.  LinkedGeoData: A core for a web of spatial open data , 2012, Semantic Web.

[24]  Oren Etzioni,et al.  Learning First-Order Horn Clauses from Web Text , 2010, EMNLP.

[25]  Pável Calado,et al.  Structure-based inference of xml similarity for fuzzy duplicate detection , 2007, CIKM '07.

[26]  Stephen Muggleton,et al.  Inverse entailment and progol , 1995, New Generation Computing.

[27]  Fabian M. Suchanek,et al.  Fast rule mining in ontological knowledge bases with AMIE+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{docu , 2015, The VLDB Journal.