On the evaluation of Cauchy principal value integrals by rules based on quasi-interpolating splines

Abstract In this paper we consider the numerical evaluation of one-dimensional Cauchy principal value integrals of the form ∫ −1 1 k(x) f(x) x−λ d x,−1 by rules obtained by subtracting out the singularity and then applying quadrature formulas based on quasi-interpolating splines.

[1]  P. Rabinowitz Numerical integration based on approximating splines , 1990 .

[2]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[3]  Catterina Dagnino,et al.  Spline product quadrature rules for Cauchy singular integrals , 1990 .

[4]  Philip Rabinowitz,et al.  Numerical integration in the presence of an interior singularity , 1987 .

[5]  Philip Rabinowitz,et al.  Some practical aspects in the numerical evaluation of cauchy principal value integrals , 1986 .

[6]  Ayse Alaylioglu,et al.  Product integration of logarithmic singular integrands based on cubic splines , 1984 .

[7]  J. Craggs Applied Mathematical Sciences , 1973 .

[8]  Catterina Dagnino,et al.  On the convergence of spline product quadratures for Cauchy principal value integrals , 1991 .

[9]  Catterina Dagnino,et al.  Product integration of singular integrands using quasi-interpolatory splines , 1997 .

[10]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[11]  Catterina Dagnino,et al.  Product integration of singular integrands based on cubic spline interpolation at equally spaced nodes , 1990 .

[12]  P. Rabinowitz Application of approximating splines for the solution of Cauchy singular integral equations , 1994 .

[13]  L. Schumaker,et al.  Local Spline Approximation Methods , 1975 .

[14]  Apostolos Gerasoulis,et al.  Piecewise-polynomial quadratures for Cauchy singular integrals , 1986 .

[15]  Ian H. Sloan,et al.  Product Integration in the Presence of a Singularity , 1984 .

[16]  Philip Rabinowitz,et al.  Convergence results for piecewise linear quadratures for Cauchy principal value integrals , 1988 .

[17]  E. Santi,et al.  Local spline approximation methods for singular product integration , 1996 .