Prediction of Protonation Constants of Hydrazones and Schiff Bases derived from Pyridoxal 5’-Phosphate, Pyridoxal, 3-Hydroxyisonicotinaldehyde and Salicylic Aldehyde

[1]  G. Gamov,et al.  Formation and hydrolysis of pyridoxal-5′-phosphate hydrazones and Schiff bases: Prediction of equilibrium and rate constants , 2023, Journal of Molecular Liquids.

[2]  G. Gamov,et al.  Complexation of Gold(III) with Pyridoxal 5′-Phosphate-Derived Hydrazones in Aqueous Solution , 2022, Molecules.

[3]  G. Gamov,et al.  Copper (II)-Catalyzed Oxidation of Ascorbic Acid: Ionic Strength Effect and Analytical Use in Aqueous Solution , 2022, Inorganics.

[4]  G. Gamov,et al.  Protonation of l-Ascorbic Acid in an Aqueous Solution at T = 298.2 K, p = 0.1 MPa, and I = 0.10–5.0 mol L–1 (NaCl) , 2022, Journal of Chemical & Engineering Data.

[5]  G. Gamov,et al.  Protolytic Equilibrium Constants in Aqueous Solutions of Pyridoxal-5'-Phosphate Hydrazone and L-Tyrosine , 2022, Russian Journal of Physical Chemistry A.

[6]  E. Hosten,et al.  Synthesis, characterisation and anticancer activity screening of lanthanide(III) acetate complexes with benzohydrazone and nicotinohydrazone ligands , 2020, Polyhedron.

[7]  M. V. Petrova,et al.  Interaction of pyridoxal-derived hydrazones with anions and Co2+, Co3+, Ni2+, Zn2+ cations , 2020, Physics and Chemistry of Liquids.

[8]  G. Gamov,et al.  Protonation of hydrazones derived from pyridoxal 5′-phosphate: Thermodynamic and structural elucidation , 2020 .

[9]  Y. Di,et al.  Crystal structure, optical properties, and antibacterial activity of rare earth complexes with designed 2-carbonyl propionic acid-4-nitro benzoyl hydrazone , 2019, Polyhedron.

[10]  N. Schley,et al.  Monometallic lanthanide salicylhydrazone complexes exhibiting strong near-infrared luminescence. , 2019, Chemical communications.

[11]  G. Gamov,et al.  KEV: A free software for calculating the equilibrium composition and determining the equilibrium constants using UV-Vis and potentiometric data. , 2019, Talanta.

[12]  Taosheng Chen,et al.  The Isoniazid Metabolites Hydrazine and Pyridoxal Isonicotinoyl Hydrazone Modulate Heme Biosynthesis , 2018, Toxicological sciences : an official journal of the Society of Toxicology.

[13]  G. Gamov,et al.  Influence of regioisomerism on stability, formation kinetics and ascorbate oxidation preventive properties of Schiff bases derived from pyridinecarboxylic acids hydrazides and pyridoxal 5′-phosphate☆ , 2017 .

[14]  J. Xie,et al.  Synthesis, characterization and antitumor activity of Ln(III) complexes with hydrazone Schiff base derived from 2-acetylpyridine and isonicotinohydrazone. , 2017, Oncology letters.

[15]  D. Sedmidubský,et al.  Self assembly of dialkoxo bridged dinuclear Fe(III) complex of pyridoxal Schiff base with C C bond formation – Structure, spectral and magnetic properties , 2017 .

[16]  T. Roșu,et al.  Synthesis, characterization and antimicrobial activity of copper(II) complexes with hydrazone derived from 3-hydroxy-5-(hydroxymethyl)-2-methylpyridine-4-carbaldehyde , 2015 .

[17]  M. Akhtar,et al.  A review exploring biological activities of hydrazones , 2014, Journal of pharmacy & bioallied sciences.

[18]  R. Kober,et al.  Synthesis of symmetric N,O-donor ligands derived from pyridoxal (vitamin B6): DFT studies and structural features of their binuclear chelate complexes with the oxofilic uranyl and vanadyl(V) cations , 2014 .

[19]  F. Millero,et al.  Oxidation of copper(I) in seawater at nanomolar levels , 2009 .

[20]  Jiangli Fan,et al.  A highly selective and sensitive two-photon chemosensor for silver ion derived from 3,9-dithia-6-azaundecane , 2008 .

[21]  P. Ponka,et al.  Alternative treatment paradigm for thalassemia using iron chelators. , 2008, Experimental hematology.

[22]  Irina S. Pekareva,et al.  Luminescence and structural properties of lanthanide complexes of Schiff bases derived from pyridoxal and amino acids. , 2007, Dalton transactions.

[23]  Ş. Küçükgüzel,et al.  Biological activities of hydrazone derivatives. , 2007, Molecules.

[24]  M. Toney,et al.  15N nuclear magnetic resonance studies of acid-base properties of pyridoxal-5'-phosphate aldimines in aqueous solution. , 2007, The journal of physical chemistry. B.

[25]  José G. Santos,et al.  Kinetic and thermodynamic study of the reaction of pyridoxal 5'-phosphate with L-tryptophan , 2005 .

[26]  R. Byrne,et al.  Chemical speciation of environmentally significant heavy metals with inorganic ligands. Part 1: The Hg2+– Cl–, OH–, CO32–, SO42–, and PO43– aqueous systems (IUPAC Technical Report) , 2005 .

[27]  José G. Santos,et al.  Schiff's Bases Formed between Pyridoxal 5'-Phosphate and 4-Aminobutanoic Acid. Kinetic and Thermodynamic Study. , 2003 .

[28]  C. Weber,et al.  Pyridoxal isonicotinoyl hydrazone analogs induce apoptosis in hematopoietic cells due to their iron-chelating properties. , 2003, Biochemical pharmacology.

[29]  M. Hermes-Lima,et al.  Pyridoxal isonicotinoyl hydrazone (PIH) prevents copper-mediated in vitro free radical formation , 2001, Molecular and Cellular Biochemistry.

[30]  John C. Lindon,et al.  Improved WATERGATE Pulse Sequences for Solvent Suppression in NMR Spectroscopy , 1998 .

[31]  J. O. Tognolli,et al.  Ionic medium effects on equilibrium constants Part I. Proton, copper(II), cadmium(II), lead(II) and acetate activity coefficients in aqueous solution. , 1996, Talanta.

[32]  D. Richardson,et al.  The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. , 1995, Blood.

[33]  J. Doucet,et al.  Kinetic and thermodynamic study of complex formation between iron(II) and pyridoxal isonicotinoylhydrazone and other synthetic chelating agents , 1992 .

[34]  D. Richardson,et al.  Iron chelators of the pyridoxal isonicotinoyl hydrazone class Part I. Ionisation characteristics of the ligands and their relevance to biological properties , 1990 .

[35]  G. Hefter,et al.  Iron chelators of the pyridoxal isonicotinoyl hydrazone class Part II. Formation constants with iron(III) and iron(II) , 1990 .

[36]  Genda Singh,et al.  X-ray diffraction study of copper(II) complexes of pyridoxal isonicotinoyl hydrazone , 1989 .

[37]  D. Richardson,et al.  Iron chelators of the pyridoxal isonicotinoyl hydrazone class , 1989, Biology of Metals.

[38]  A. Martell,et al.  Thermodynamic and microscopic equilibrium constants of molecular species formed from pyridoxal 5'-phosphate and 2-amino-3-phosphonopropionic acid in aqueous and water-d2 solution , 1984 .

[39]  C. Salerno,et al.  A calorimetric study of the interaction of pyridoxal 5'-phosphate with aspartate apoaminotransferase and model compounds. , 1982, The Journal of biological chemistry.

[40]  P. S. Hallman,et al.  Multidentate Ligand Equilibria. I. Pyridine-2-aldehyde-2-pyridylhydrazone , 1964 .

[41]  A. Mozzarelli,et al.  Exploring the pyridoxal 5'-phosphate-dependent enzymes. , 2006, Chemical record.

[42]  D. Richardson,et al.  Crystal and molecular structure of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and its iron(III) complex: an iron chelator with anti-tumour activity , 1999, JBIC Journal of Biological Inorganic Chemistry.

[43]  J. Donoso,et al.  Band-shape analysis and resolution of electronic spectra of pyridoxal 5′-phosphate with amino acids , 1991 .

[44]  J. Donoso,et al.  Kinetic and thermodynamic parameters for Schiff's base formation between pyridoxal 5′-phosphate and n-hexylamine , 1987 .

[45]  A. Aruffo,et al.  STRUCTURAL STUDIES OF IRON(III) COMPLEXES OF THE NEW IRON-BINDING DRUG, PYRIDOXAL ISONICOTINOYL HYDRAZONE , 1982 .

[46]  S. Mukherjee,et al.  Stability constants of isonicotinoyl hydrazide and acylnicotinoyl hydrazide complexes of some lanthanides , 1980 .