Genome-wide characterization of simple sequence repeats in Pyrus bretschneideri and their application in an analysis of genetic diversity in pear

[1]  Jun Wu,et al.  The Genome of Pear , 2019, The Pear Genome.

[2]  A. Zarei,et al.  Assessment of genetic structure among different pear species (Pyrus spp.) using apple-derived SSR and evidence of duplications in the pear genome , 2018 .

[3]  W. Lei,et al.  Construction of a high-density genetic linkage map in pear (Pyrus communis × Pyrus pyrifolia nakai) using SSRs and SNPs developed by SLAF-seq , 2017 .

[4]  A. Rose,et al.  Intron DNA Sequences Can Be More Important Than the Proximal Promoter in Determining the Site of Transcript Initiation , 2017, Plant Cell.

[5]  Z. Fang,et al.  Genome-wide indel/SSR scanning reveals significant loci associated with excellent agronomic traits of a cabbage (Brassica oleracea) elite parental line ‘01–20’ , 2017, Scientific Reports.

[6]  Jun Wu,et al.  Genetic variation and population structure of “Zangli” pear landraces in Tibet revealed by SSR markers , 2017, Tree Genetics & Genomes.

[7]  R. Francis,et al.  pophelper: an R package and web app to analyse and visualize population structure , 2017, Molecular ecology resources.

[8]  Youqing Luo,et al.  Development and characterization of polymorphic genomic-SSR markers in Asian long-horned beetle (Anoplophora glabripennis) , 2017, Bulletin of Entomological Research.

[9]  M. Pooler,et al.  Genetic relationships of boxwood (Buxus L.) accessions based on genic simple sequence repeat markers , 2017, Genetic Resources and Crop Evolution.

[10]  F. Luan,et al.  Development of genome-wide SSR markers in melon with their cross-species transferability analysis and utilization in genetic diversity study , 2016, Molecular Breeding.

[11]  S. Bai,et al.  Retrotransposon-based sequence-specific amplification polymorphism markers reveal that cultivated Pyrus ussuriensis originated from an interspecific hybridization , 2016 .

[12]  Y. Qiao,et al.  Development, characterization, and annotation of potential simple sequence repeats by transcriptome sequencing in pears (Pyrus pyrifolia Nakai). , 2016, Genetics and molecular research : GMR.

[13]  A. Moglia,et al.  A Genome-Wide Survey of the Microsatellite Content of the Globe Artichoke Genome and the Development of a Web-Based Database , 2016, PloS one.

[14]  Guanpin Yang,et al.  Characterization of genome-wide microsatellites of Saccharina japonica based on a preliminary assembly of Illumina sequencing reads , 2016, Journal of Ocean University of China.

[15]  Jun Wu,et al.  Genetic diversity and population structure of pear (Pyrus spp.) collections revealed by a set of core genome-wide SSR markers , 2015, Tree Genetics & Genomes.

[16]  Jinfang Chu,et al.  PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening , 2015, Journal of experimental botany.

[17]  D. Duan,et al.  Development of Saccharina japonica genomic SSR markers using next-generation sequencing , 2015, Journal of Applied Phycology.

[18]  S. Korban,et al.  Construction of a High-Density Simple Sequence Repeat Consensus Genetic Map for Pear (Pyrus spp.) , 2015, Plant Molecular Biology Reporter.

[19]  M. Li,et al.  High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers , 2014, Journal of experimental botany.

[20]  Y. Teng,et al.  Development of genic SSR markers from transcriptome sequencing of pear buds , 2014, Journal of Zhejiang University SCIENCE B.

[21]  H. Cao,et al.  A chimeric transcript containing Psy1 and a potential mRNA is associated with yellow flesh color in tomato accession PI 114490 , 2014, Planta.

[22]  Jun Wu,et al.  Identifying genetic diversity and a preliminary core collection of Pyrus pyrifolia cultivars by a genome-wide set of SSR markers , 2014 .

[23]  Jun Wu,et al.  A Novel Set of EST-Derived SSR Markers for Pear and Cross-Species Transferability in Rosaceae , 2013, Plant Molecular Biology Reporter.

[24]  Leiting Li,et al.  Transferability of Newly Developed Pear SSR Markers to Other Rosaceae Species , 2013, Plant Molecular Biology Reporter.

[25]  S. Moriya,et al.  DNA MARKERS DEVELOPED FROM GENOME SEQUENCING ANALYSIS IN JAPANESE PEAR (PYRUS PYRIFOLIA) , 2013 .

[26]  Jun Wang,et al.  The genome of the pear (Pyrus bretschneideri Rehd.) , 2013, Genome research.

[27]  V. Quecini,et al.  Identification of a Simple Sequence Repeat molecular-marker set for large-scale analyses of pear germplasm , 2012 .

[28]  A. Ebadi,et al.  Genetic Diversity of Some Pear Cultivars and Genotypes Using Simple Sequence Repeat (SSR) Markers , 2012, Plant Molecular Biology Reporter.

[29]  T. Sharma,et al.  RESEARCH ARTICLE Open Access Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh] , 2022 .

[30]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[31]  J. Bocianowski,et al.  Genetic diversity of European pear cultivars (Pyrus communis L.) and wild pear (Pyrus pyraster (L.) Burgsd.) inferred from microsatellite markers analysis , 2010, Genetic Resources and Crop Evolution.

[32]  Toshiya Yamamoto,et al.  Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia) , 2009 .

[33]  Kun-song Chen,et al.  An assessment of genetic variability and relationships within Asian pears based on AFLP (amplified fragment length polymorphism) markers , 2008 .

[34]  J. Hormaza,et al.  Genetic diversity in local Tunisian pears (Pyrus communis L.) studied with SSR markers , 2008 .

[35]  D. Mackill,et al.  Marker-assisted selection: an approach for precision plant breeding in the twenty-first century , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  D. R. Morgan,et al.  Phylogeny and classification of Rosaceae , 2007, Plant Systematics and Evolution.

[37]  Maido Remm,et al.  Enhancements and modifications of primer design program Primer3 , 2007, Bioinform..

[38]  Kun-song Chen,et al.  Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers , 2007, Genetic Resources and Crop Evolution.

[39]  C. James,et al.  Isolation and characterization of polymorphic microsatellite markers from European pear (Pyrus communis L.) , 2006 .

[40]  Lin Fang,et al.  WEGO: a web tool for plotting GO annotations , 2006, Nucleic Acids Res..

[41]  Juan Miguel García-Gómez,et al.  BIOINFORMATICS APPLICATIONS NOTE Sequence analysis Manipulation of FASTQ data with Galaxy , 2005 .

[42]  Kejun Liu,et al.  PowerMarker: an integrated analysis environment for genetic marker analysis , 2005, Bioinform..

[43]  E. Pang,et al.  An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts , 2005, Euphytica.

[44]  Andreas Graner,et al.  Genic microsatellite markers in plants: features and applications. , 2005, Trends in biotechnology.

[45]  Toshiya Yamamoto,et al.  Identification of Parentage of Japanese Pear 'Housui' , 2004 .

[46]  T. Hayashi,et al.  Simple sequence repeats for genetic analysis in pear , 2002, Euphytica.

[47]  T. Akihama,et al.  Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.) , 1998, Genetic Resources and Crop Evolution.

[48]  T. Hayashi,et al.  Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears , 2002, Theoretical and Applied Genetics.

[49]  Toshiya Yamamoto,et al.  Identification of Asian Pear Varieties by SSR Analysis , 2002 .

[50]  T. Hayashi,et al.  Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai) , 2001 .

[51]  A. Itai,et al.  Genetic relationships of pear cultivars in Xinjiang, China, as measured by RAPD markers , 2001 .

[52]  J. Jurka,et al.  Microsatellites in different eukaryotic genomes: survey and analysis. , 2000, Genome research.

[53]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[54]  Y. Kashi,et al.  Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. , 2000, Genome research.

[55]  H. Ellegren,et al.  Microsatellite evolution--a reciprocal study of repeat lengths at homologous loci in cattle and sheep. , 1997, Molecular biology and evolution.

[56]  F. Yeh Population genetic analysis of codominant and dominant markers and quantitative traits. , 1997 .

[57]  W. Powell,et al.  Polymorphism revealed by simple sequence repeats , 1996 .

[58]  F. Rohlf,et al.  NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, version 2.1: Owner manual , 1992 .

[59]  D. Tautz,et al.  Simple sequences are ubiquitous repetitive components of eukaryotic genomes. , 1984, Nucleic acids research.

[60]  A. A. Hanson The Origin, Variation, Immunity, and Breeding of Cultivated Plants , 1952 .

[61]  K. S. Chester,et al.  The origin, variation, immunity and breeding of cultivated plants : selected writings , 1951 .