The effects of short-term increases in turbidity on sandflat microphytobenthic productivity and nutrient fluxes

Abstract Turbidity is a major limiting factor of benthic primary production and nutrient uptake on estuarine intertidal sandflats. Estuaries exhibit a wide range of suspended sediment concentrations (SSCs), however, few studies have quantified the effects of increasing SSC on ecosystem functioning. Here, we report on an in situ experiment examining the effects of short-term increases in SSC on intertidal sandflat benthic primary production and nutrient fluxes. Fine sediments ( 2 ) at concentrations ranging from 16 to 157 mg L − 1 and kept in suspension for a 4–5 h incubation period. In addition to solute fluxes we also measured sediment chlorophyll- a content and physical properties as covariables. In sunlit chambers, we observed a three-fold reduction in net primary production (NPP) with increasing SSC (NPP, R 2  = 0.36, p = 0.01) and stronger reductions when NPP was standardised by sediment chlorophyll- a content (i.e., photosynthetic efficiency, NPP chl- a , R 2  = 0.62, p  4 + , R 2  = 0.44, p  4 + efflux was solely correlated to SSC. The results of this study imply that increased exposure to SSC associated with the tidal exchange of sediments from far-field sources may severely impair benthic primary productivity and increase the flux of inorganic nutrients from benthic to pelagic systems.

[1]  G. Underwood,et al.  Patterns in microphytobenthic primary productivity: Species‐specific variation in migratory rhythms and photosynthetic efficiency in mixed‐species biofilms , 2005 .

[2]  M. Keough,et al.  Competition modifies the response of organisms to toxic disturbance , 2003 .

[3]  L. Nielsen,et al.  Diurnal variation of denitrification and nitrification in sediments colonized by benthic microphytes , 1994 .

[4]  Max Gibbs,et al.  Functional Role of Large Organisms in Intertidal Communities: Community Effects and Ecosystem Function , 2006, Ecosystems.

[5]  Hugh L. MacIntyre,et al.  Mediation of benthic-pelagic coupling by microphytobenthos: an energy- and material-based model for initiation of blooms of Aureococcus anophagefferens , 2004 .

[6]  K. Sundbäck,et al.  Effect of sediment load on the microbenthic community of a shallow-water sandy sediment , 1997 .

[7]  C. Pilditch,et al.  Environmental history and physiological state influence feeding responses of Atrina zelandica to suspended sediment concentrations , 2004 .

[8]  D. Davoult,et al.  Annual budget of benthic production in Mont Saint-Michel Bay considering cloudiness, microphytobenthos migration, and variability of respiration rates with tidal conditions , 2009 .

[9]  R. E. Smith,et al.  The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time , 2002 .

[10]  C. Heip,et al.  The fate of intertidal microphytobenthos carbon: An in situ 13C‐labeling study , 2000 .

[11]  S. An,et al.  Temporal variation in the vertical distribution of microphytobenthos in intertidal flats of the Nakdong River estuary, Korea , 2010 .

[12]  K. Sundbäck,et al.  Dissolved organic nitrogen: an important source of nitrogen for the microphytobenthos in sandy sediment , 2011 .

[13]  B. Schoefs The Light-Dependent and Light-Independent Reduction of Protochlorophyllide a to Chlorophyllide a , 2004, Photosynthetica.

[14]  J. Rijstenbil,et al.  Effects of UVB radiation and salt stress on growth, pigments and antioxidative defence of the marine diatom Cylindrotheca closterium , 2003 .

[15]  J. Cloern,et al.  Microphytobenthic potential productivity estimated in three tidal embayments of the San Francisco Bay: A comparative study , 2002 .

[16]  C. Pilditch,et al.  Context-Specific Bioturbation Mediates Changes to Ecosystem Functioning , 2011, Ecosystems.

[17]  D. B. Nedwell,et al.  Effect of illumination and emersion period on the exchange of ammonium across the estuarine sediment-water interface , 1999 .

[18]  S. Talke,et al.  Suspended sediment fluxes at an intertidal flat: The shifting influence of wave, wind, tidal, and freshwater forcing , 2008 .

[19]  J. Kromkamp,et al.  Bacterial and phytoplankton production in the maximum turbidity zone of three European estuaries: the Elbe, Westerschelde and Gironde , 1999 .

[20]  Carlos M. Duarte,et al.  The fate of marine autotrophic production , 1996 .

[21]  H. Barnes Oceanography and marine biology : an annual review , 1986 .

[22]  P. Richard,et al.  SEASONAL EFFECT ON THE RELATIONSHIP BETWEEN THE PHOTOSYNTHETIC CAPACITY OF INTERTIDAL MICROPHYTOBENTHOS AND TEMPERATURE 1 , 1997 .

[23]  M. Kühl,et al.  Benthic diatoms of a high Arctic fjord (Young Sound, NE Greenland): importance for ecosystem primary production , 2002 .

[24]  Hugh L. MacIntyre,et al.  Photoacclimation in the marine diatom Skeletonema costatum , 2000 .

[25]  N. Hancock,et al.  Sediment transport through a tidal creek , 2012 .

[26]  J. Ellis,et al.  Muddy waters: elevating sediment input to coastal and estuarine habitats , 2004 .

[27]  J. V. Beusekom,et al.  Wind- and tide-induced resuspension of sediment and microphytobenthos from tidal flats in the Ems estuary , 1995 .

[28]  L. Cahoon THE ROLE OF BENTHIC MICROALGAE IN NERITIC ECOSYSTEMS , 2002 .

[29]  Jae-Sang Hong,et al.  Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses , 2003 .

[30]  P. R. Day,et al.  Particle Fractionation and Particle‐Size Analysis , 2015 .

[31]  V. Brotas,et al.  Adaptations of microphytobenthos assemblages to sediment type and tidal position. , 2009 .

[32]  C. Pilditch,et al.  Sedimentary Environment Influences the Effect of an Infaunal Suspension Feeding Bivalve on Estuarine Ecosystem Function , 2011, PloS one.

[33]  S. Thrush,et al.  Contamination on sandflats and the decoupling of linked ecological functions , 2011 .

[34]  Hugh L. MacIntyre,et al.  Primary production by suspended and benthic microalgae in a turbid estuary: time-scales of variability in San Antonio Bay, Texas , 1996 .

[35]  S. Thrush,et al.  Altered Sea Ice Thickness and Permanence Affects Benthic Ecosystem Functioning in Coastal Antarctica , 2012, Ecosystems.

[36]  C. Pilditch,et al.  Variation in sediment stability and relation to indicators of microbial abundance in the Okura Estuary, New Zealand , 2003 .

[37]  G. Coco,et al.  Sediment transport on an estuarine intertidal flat: Measurements and conceptual model of waves, rainfall and exchanges with a tidal creek , 2007 .

[38]  G. Underwood,et al.  Primary Production by Phytoplankton and Microphytobenthos in Estuaries , 1999 .

[39]  V. Brotas,et al.  Light control on phytoplankton production in a shallow and turbid estuarine system , 2011, Hydrobiologia.

[40]  K. Sundbäck,et al.  Microphytobenthic productivity and biomass in sublittoral sediments of a stratified bay, southeastern Kattegat , 1988 .

[41]  A. Leynaert,et al.  Dissolved inorganic nitrogen uptake by intertidal microphytobenthos: nutrient concentrations, light availability and migration , 2009 .

[42]  F. Colijn Light absorption in the waters of the Ems-Dollard estuary and its consequences for the growth of phytoplankton and microphytobenthos , 1982 .

[43]  K. Sundbäck,et al.  Recovery of microphytobenthos and benthic functions after sediment deposition , 2012 .

[44]  B. Osborne,et al.  Light and Photosynthesis in Aquatic Ecosystems. , 1985 .

[45]  James E. Cloern,et al.  Turbidity as a control on phytoplankton biomass and productivity in estuaries , 1987 .

[46]  T. Blackburn,et al.  Resilience of Pelagic and Benthic Microbial Communities to Sediment Resuspension in a Coastal Ecosystem, Knebel Vig, Denmark , 1996 .

[47]  H. Røy,et al.  Benthic photosynthesis in submerged Wadden Sea intertidal flats , 2007 .

[48]  John B. Anderson,et al.  An Assessment of Analytical Techniques For The Size Analysis of Fine-Grained Sediments , 1988 .

[49]  J. Beardall,et al.  Photosynthetic characteristics of sub-tidal benthic microalgal populations from a temperate, shallow water marine ecosystem , 2001 .

[50]  M. Sullivan,et al.  WATER COLUMN PRODUCTIVITY ATTRIBUTABLE TO DISPLACED BENTHIC DIATOMS IN WELL‐MIXED SHALLOW ESTUARIES 1 , 1988 .

[51]  D. Paterson,et al.  Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos , 1994 .

[52]  J. Kirk Effects of suspensoids (turbidity) on penetration of solar radiation in aquatic ecosystems , 1985, Hydrobiologia.

[53]  I. Polikarpov,et al.  Diatom activity within soft sediments: behavioural and physiological processes , 2003 .

[54]  S. Thrush,et al.  Disturbance of sandflats by thin terrigenous sediment deposits: consequences for primary production and nutrient cycling. , 2011, Ecological applications : a publication of the Ecological Society of America.

[55]  D. Wethey,et al.  Small scale terrestrial clay deposits on intertidal sandflats: Behavioral changes and productivity reduction , 2012 .

[56]  T. G. Owens,et al.  Chlorophyll Turnover in Skeletonema costatum, a Marine Plankton Diatom. , 1979, Plant physiology.

[57]  J. Hewitt,et al.  Incorporating temporal variability of stressors into studies: An example using suspension-feeding bivalves and elevated suspended sediment concentrations , 2007 .

[58]  A. Sandee,et al.  Nutrients, light and primary production by phytoplankton and microphytobenthos in the eutrophic, turbid Westerschelde estuary (The Netherlands) , 1995, Hydrobiologia.

[59]  J. Serôdio,et al.  Effects of desiccation on the photosynthetic activity of intertidal microphytobenthos biofilms as studied by optical methods , 2009 .

[60]  P. Hall,et al.  Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments: in situ measurements using new experimental technology , 2003 .

[61]  A. C. Anil,et al.  Vertical migratory rhythms of benthic diatoms in a tropical intertidal sand flat: influence of irradiance and tides , 2004 .

[62]  K. Sundbäck,et al.  Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments : an annual study , 2000 .

[63]  C. Pilditch,et al.  Density dependent effects of an infaunal suspension-feeding bivalve (Austrovenus stutchburyi) on sandflat nutrient fluxes and microphytobenthic productivity , 2009 .

[64]  P. Ridd,et al.  Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides , 2004 .