Neurodegeneration cell per cell

[1]  Tuan Leng Tay,et al.  Microglia states and nomenclature: A field at its crossroads , 2022, Neuron.

[2]  T. Raj,et al.  Transcriptome deregulation of peripheral monocytes and whole blood in GBA-related Parkinson’s disease , 2022, Molecular Neurodegeneration.

[3]  A. Singleton,et al.  Association of a common genetic variant with Parkinson’s disease is mediated by microglia , 2022, Science Translational Medicine.

[4]  B. de Strooper,et al.  Deep proteomic analysis of human microglia and model systems reveal fundamental biological differences of in vitro and ex vivo cells , 2022, bioRxiv.

[5]  I. Cobos,et al.  Molecular signatures underlying neurofibrillary tangle susceptibility in Alzheimer’s disease , 2022, Neuron.

[6]  I. Amit,et al.  A shared disease-associated oligodendrocyte signature among multiple CNS pathologies , 2022, Nature Neuroscience.

[7]  P. Verstreken,et al.  Neuronal identity defines α-synuclein and tau toxicity , 2022, Neuron.

[8]  J. Duan,et al.  BIN1 is a key regulator of proinflammatory and neurodegeneration-related activation in microglia , 2022, Molecular Neurodegeneration.

[9]  Evan Z. Macosko,et al.  Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease , 2022, Nature Neuroscience.

[10]  P. Verstreken,et al.  Parkinsonism mutations in DNAJC6 cause lipid defects and neurodegeneration that are rescued by Synj1 , 2022, bioRxiv.

[11]  R. D'Hooge,et al.  Astrocyte calcium dysfunction causes early network hyperactivity in Alzheimer’s disease , 2022, bioRxiv.

[12]  Nick C Fox,et al.  New insights into the genetic etiology of Alzheimer’s disease and related dementias , 2022, Nature Genetics.

[13]  Bin Zhang,et al.  Single-cell transcriptomic atlas of the human substantia nigra in Parkinson’s disease , 2022, bioRxiv.

[14]  S. Liddelow,et al.  Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease , 2022, Neuron.

[15]  David S. Fischer,et al.  Ultra‐high sensitivity mass spectrometry quantifies single‐cell proteome changes upon perturbation , 2022, Molecular systems biology.

[16]  Róbert Pálovics,et al.  A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk , 2022, Nature.

[17]  D. Holtzman,et al.  Selective reduction of astrocyte apoE3 and apoE4 strongly reduces Aβ accumulation and plaque-related pathology in a mouse model of amyloidosis , 2022, Molecular Neurodegeneration.

[18]  D. Sulzer,et al.  Subcellular proteomics of dopamine neurons in the mouse brain , 2022, eLife.

[19]  Huanming Yang,et al.  Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays , 2021, Cell.

[20]  A. Wingo,et al.  Large-scale deep multi-layer analysis of Alzheimer’s disease brain reveals strong proteomic disease-related changes not observed at the RNA level , 2021, Nature Neuroscience.

[21]  Daniel J. Gaffney,et al.  Substantial somatic genomic variation and selection for BCOR mutations in human induced pluripotent stem cells , 2021, Nature Genetics.

[22]  Andrea D Matlock,et al.  Answer ALS, a large-scale resource for sporadic and familial ALS combining clinical and multi-omics data from induced pluripotent cell lines , 2020, Nature Neuroscience.

[23]  Amaia M. Arranz,et al.  Human iPSC-derived astrocytes transplanted into the mouse brain undergo morphological changes in response to amyloid-β plaques , 2021, Molecular neurodegeneration.

[24]  Laurent F. Thomas,et al.  A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease , 2021, Nature Genetics.

[25]  V. Menon,et al.  Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors , 2021, Neuron.

[26]  K. Blennow,et al.  Microglial activation and tau propagate jointly across Braak stages , 2021, Nature Medicine.

[27]  S. Liddelow,et al.  Neuroinflammatory astrocyte subtypes in the mouse brain , 2021, Nature Neuroscience.

[28]  H. Koch,et al.  Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures , 2021, Molecular neurodegeneration.

[29]  S. Costafreda,et al.  Neuropsychological deficits in Posterior Cortical Atrophy and typical Alzheimer's disease: A meta-analytic review , 2021, Cortex.

[30]  Tau En Lim,et al.  Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer’s disease , 2021, Molecular neurodegeneration.

[31]  P. Matthews,et al.  Diverse human astrocyte and microglial transcriptional responses to Alzheimer’s pathology , 2021, bioRxiv.

[32]  R. Petersen,et al.  Single-cell profiling of the human primary motor cortex in ALS and FTLD , 2021, bioRxiv.

[33]  L. Tsai,et al.  Single-cell anatomical analysis of human hippocampus and entorhinal cortex uncovers early-stage molecular pathology in Alzheimer’s disease , 2021, bioRxiv.

[34]  Jonathan S. Packer,et al.  Embryo-scale, single-cell spatial transcriptomics , 2021, Science.

[35]  D. Geschwind,et al.  Functional regulatory variants implicate distinct transcriptional networks in dementia , 2021, bioRxiv.

[36]  S. Lincoln,et al.  Transcriptional landscape of human microglia reveals robust gene expression signatures that implicates age, sex and APOE-related immunometabolic pathway perturbations , 2021, bioRxiv.

[37]  D. Hernandez,et al.  The Foundational data initiative for Parkinson’s disease (FOUNDIN-PD): enabling efficient translation from genetic maps to mechanism , 2021, bioRxiv.

[38]  Mikko T. Huuskonen,et al.  APOE4 accelerates advanced-stage vascular and neurodegenerative disorder in old Alzheimer’s mice via cyclophilin A independently of amyloid-β , 2021, Nature Aging.

[39]  M. Heikenwalder,et al.  SpaceM reveals metabolic states of single cells , 2021, Nature Methods.

[40]  Z. Ouyang,et al.  Single-cell lipidomics with high structural specificity by mass spectrometry , 2021, Nature Communications.

[41]  J. Marioni,et al.  Computational principles and challenges in single-cell data integration , 2021, Nature Biotechnology.

[42]  D. Holtzman,et al.  Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy , 2021, Nature.

[43]  Michael R. Johnson,et al.  Cross-platform transcriptional profiling identifies common and distinct molecular pathologies in Lewy body diseases , 2021, bioRxiv.

[44]  S. Horvath,et al.  Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer’s patients , 2021, Cell stem cell.

[45]  A. Nimmerjahn,et al.  Microglia use TAM receptors to detect and engulf amyloid beta plaques , 2021, Nature Immunology.

[46]  Gabriel N. Teku,et al.  TNF-α and α-synuclein fibrils differently regulate human astrocyte immune reactivity and impair mitochondrial respiration. , 2021, Cell reports.

[47]  A. Butt,et al.  Keeping the ageing brain wired: a role for purine signalling in regulating cellular metabolism in oligodendrocyte progenitors , 2021, Pflügers Archiv - European Journal of Physiology.

[48]  R. Schreiber,et al.  Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders , 2021, Cellular and Molecular Life Sciences.

[49]  G. Castelo-Branco,et al.  Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues , 2021, Nature Biotechnology.

[50]  L. Volpicelli-Daley,et al.  Molecular Mechanisms Underlying Synaptic and Axon Degeneration in Parkinson’s Disease , 2021, Frontiers in Cellular Neuroscience.

[51]  B. Ghetti,et al.  Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates , 2021, bioRxiv.

[52]  J. Mulder,et al.  Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease , 2021, Acta Neuropathologica.

[53]  Kira E. Poskanzer,et al.  Reactive astrocyte nomenclature, definitions, and future directions , 2021, Nature Neuroscience.

[54]  B. de Strooper,et al.  Stem-cell-derived human microglia transplanted into mouse brain to study human disease , 2021, Nature Protocols.

[55]  Satrajit S. Ghosh,et al.  A multimodal cell census and atlas of the mammalian primary motor cortex , 2020, Nature.

[56]  Lihua Zhang,et al.  Inference and analysis of cell-cell communication using CellChat , 2020, Nature Communications.

[57]  Sayed Hadi Hashemi,et al.  Genome-wide CRISPRi/a screens in human neurons link lysosomal failure to ferroptosis , 2020, Nature Neuroscience.

[58]  OUP accepted manuscript , 2021, Brain.

[59]  P. Edison,et al.  Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? , 2020, Nature Reviews Neurology.

[60]  W. Huck,et al.  Single-cell intracellular epitope and transcript detection revealing signal transduction dynamics , 2020, bioRxiv.

[61]  M. Ryten,et al.  Heritability Enrichment Implicates Microglia in Parkinson’s Disease Pathogenesis , 2020, medRxiv.

[62]  J. Faul,et al.  Considering the APOE locus in Alzheimer’s disease polygenic scores in the Health and Retirement Study: a longitudinal panel study , 2020, BMC medical genomics.

[63]  C. Cotman,et al.  Gene expression and functional deficits underlie TREM2-knockout microglia responses in human models of Alzheimer’s disease , 2020, Nature Communications.

[64]  C. Gravel,et al.  RIT2 reduces LRRK2 kinase activity and protects against alpha-synuclein neuropathology , 2020, bioRxiv.

[65]  B. Winblad,et al.  Small molecule therapeutics for tauopathy in Alzheimer's disease: Walking on the path of most resistance. , 2020, European journal of medicinal chemistry.

[66]  Kara H. Woo,et al.  Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions , 2020, Scientific Data.

[67]  Howard Y. Chang,et al.  Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases , 2020, Nature Genetics.

[68]  B. de Strooper,et al.  Translating genetic risk of Alzheimer’s disease into mechanistic insight and drug targets , 2020, Science.

[69]  S. Quake,et al.  Mapping single-cell atlases throughout Metazoa unravels cell type evolution , 2020, bioRxiv.

[70]  B. Garcia,et al.  An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease , 2020, Nature Genetics.

[71]  G. Landreth,et al.  The effect of amyloid on microglia-neuron interactions before plaque onset occurs independently of TREM2 in a mouse model of Alzheimer’s disease , 2020, Neurobiology of Disease.

[72]  K. Puttonen,et al.  Metabolic alterations in Parkinson’s disease astrocytes , 2020, Scientific Reports.

[73]  M. Nalls,et al.  The Parkinson's Disease Genome‐Wide Association Study Locus Browser , 2020, Movement disorders : official journal of the Movement Disorder Society.

[74]  C. Webber,et al.  A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders , 2020, Nature Communications.

[75]  K. Nilsson,et al.  Prominent microglial inclusions in transgenic mouse models of α-synucleinopathy that are distinct from neuronal lesions , 2020, Acta Neuropathologica Communications.

[76]  T. Dawson,et al.  Microglia and astrocyte dysfunction in parkinson's disease , 2020, Neurobiology of Disease.

[77]  E. Metzakopian,et al.  Development and Application of High-Throughput Single Cell Lipid Profiling: A Study of SNCA-A53T Human Dopamine Neurons , 2020, iScience.

[78]  Joakim Lundeberg,et al.  Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer’s Disease , 2020, Cell.

[79]  T. Vogt,et al.  Cell Type-Specific Transcriptomics Reveals that Mutant Huntingtin Leads to Mitochondrial RNA Release and Neuronal Innate Immune Activation , 2020, Neuron.

[80]  Nick C Fox,et al.  Molecular and cellular pathology of monogenic Alzheimer’s disease at single cell resolution , 2020, bioRxiv.

[81]  Sonja W. Scholz,et al.  Large-scale pathway specific polygenic risk and transcriptomic community network analysis identifies novel functional pathways in Parkinson disease , 2020, Acta Neuropathologica.

[82]  I. Amit,et al.  The Physiology, Pathology, and Potential Therapeutic Applications of the TREM2 Signaling Pathway , 2020, Cell.

[83]  Joseph Bergenstråhle,et al.  Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration , 2020, BioEssays : news and reviews in molecular, cellular and developmental biology.

[84]  Jamie L. Marshall,et al.  Disease-associated astrocytes in Alzheimer’s disease and aging , 2020, Nature Neuroscience.

[85]  N. Neff,et al.  Molecular characterization of selectively vulnerable neurons in Alzheimer’s Disease , 2020, Nature Neuroscience.

[86]  Matthias Heinig,et al.  The single-cell eQTLGen consortium , 2020, eLife.

[87]  C. Ponting,et al.  Identification of region-specific astrocyte subtypes at single cell resolution , 2020, Nature Communications.

[88]  L. Buée,et al.  Novel Alzheimer risk genes determine the microglia response to amyloid‐β but not to TAU pathology , 2020, EMBO molecular medicine.

[89]  Ki Duk Park,et al.  Aberrant Tonic Inhibition of Dopaminergic Neuronal Activity Causes Motor Symptoms in Animal Models of Parkinson’s Disease , 2020, Current Biology.

[90]  D. Rowitch,et al.  Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration , 2020, Neuron.

[91]  Steve Lianoglou,et al.  TREM2 Regulates Microglial Cholesterol Metabolism upon Chronic Phagocytic Challenge , 2019, Neuron.

[92]  Maxim N. Artyomov,et al.  Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and - independent cellular responses in Alzheimer’s disease , 2019, Nature Medicine.

[93]  P. Greengard,et al.  Selective Neuronal Vulnerability in Alzheimer’s Disease: A Network-Based Analysis , 2018, Neuron.

[94]  Prasad Pethe,et al.  Polycomb repressive complex 1: Regulators of neurogenesis from embryonic to adult stage , 2020, Journal of cellular physiology.

[95]  Y. Saeys,et al.  NicheNet: modeling intercellular communication by linking ligands to target genes , 2019, Nature Methods.

[96]  B. de Strooper,et al.  Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer’s disease , 2019, Acta Neuropathologica.

[97]  Sonja W. Scholz,et al.  Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies , 2019, The Lancet Neurology.

[98]  James B. Brewer,et al.  Brain cell type–specific enhancer–promoter interactome maps and disease-risk association , 2019, Science.

[99]  V. Perry,et al.  Stem-cell-derived human microglia transplanted in mouse brain to study human disease , 2019, Nature Neuroscience.

[100]  John F. Ouyang,et al.  A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation , 2019, Nature Neuroscience.

[101]  S. Haggarty,et al.  A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies , 2019, Stem cell reports.

[102]  S. Pääbo,et al.  Organoid single-cell genomic atlas uncovers human-specific features of brain development , 2019, Nature.

[103]  Kun Zhang,et al.  High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell , 2019, Nature Biotechnology.

[104]  J. Fak,et al.  A Large Panel of Isogenic APP and PSEN1 Mutant Human iPSC Neurons Reveals Shared Endosomal Abnormalities Mediated by APP β-CTFs, Not Aβ , 2019, Neuron.

[105]  W. Banks,et al.  The extracellular matrix of the blood–brain barrier: structural and functional roles in health, aging, and Alzheimer’s disease , 2019, Tissue barriers.

[106]  Chenglong Xia,et al.  Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression , 2019, Proceedings of the National Academy of Sciences.

[107]  Brian J Cummings,et al.  Development of a Chimeric Model to Study and Manipulate Human Microglia In Vivo , 2019, Neuron.

[108]  T. Wyss-Coray,et al.  Lipid droplet accumulating microglia represent a dysfunctional and pro-inflammatory state in the aging brain , 2019, bioRxiv.

[109]  E. Ruppin,et al.  Mitochondrial Regulation of the Hippocampal Firing Rate Set Point and Seizure Susceptibility , 2019, Neuron.

[110]  D. Holtzman,et al.  TREM2 function impedes tau seeding in neuritic plaques , 2019, Nature Neuroscience.

[111]  C. Jack,et al.  Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report , 2019, Brain : a journal of neurology.

[112]  Manolis Kellis,et al.  Single-cell transcriptomic analysis of Alzheimer’s disease , 2019, Nature.

[113]  Nicola Thrupp,et al.  The Major Risk Factors for Alzheimer’s Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques , 2019, Cell reports.

[114]  Sterling C. Johnson,et al.  The BIN1 rs744373 SNP is associated with increased tau-PET levels and impaired memory , 2019, Nature Communications.

[115]  P. Svenningsson,et al.  Binding of α-synuclein oligomers to Cx32 facilitates protein uptake and transfer in neurons and oligodendrocytes , 2019, Acta Neuropathologica.

[116]  Peter R. Martin,et al.  Longitudinal tau-PET uptake and atrophy in atypical Alzheimer's disease , 2019, NeuroImage: Clinical.

[117]  Amaia M. Arranz,et al.  The role of astroglia in Alzheimer's disease: pathophysiology and clinical implications , 2019, The Lancet Neurology.

[118]  J. Morris,et al.  A single-nuclei RNA sequencing study of Mendelian and sporadic AD in the human brain , 2019, Alzheimer's Research & Therapy.

[119]  Michael J. Lawson,et al.  Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ , 2019, Nature.

[120]  L. Goldstein,et al.  Cholesterol Metabolism Is a Druggable Axis that Independently Regulates Tau and Amyloid-β in iPSC-Derived Alzheimer’s Disease Neurons , 2019, Cell stem cell.

[121]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[122]  Nick C Fox,et al.  Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing , 2019, Nature Genetics.

[123]  Theresa M. Harrison,et al.  Longitudinal tau accumulation and atrophy in aging and alzheimer disease , 2019, Annals of neurology.

[124]  R. Satija,et al.  Integrative single-cell analysis , 2019, Nature Reviews Genetics.

[125]  K. D. Duncan,et al.  Advances in mass spectrometry based single-cell metabolomics. , 2019, The Analyst.

[126]  M. Zhang,et al.  Single-cell transcriptomes reveal molecular specializations of neuronal cell types in the developing cerebellum , 2019, Journal of molecular cell biology.

[127]  Hunna J. Watson,et al.  Genetic Identification of Cell Types Underlying Brain Complex Traits Yields Novel Insights Into the Etiology of Parkinson’s Disease , 2019, bioRxiv.

[128]  D. Malhotra,et al.  Altered human oligodendrocyte heterogeneity in multiple sclerosis , 2019, Nature.

[129]  E. Anton,et al.  Single-cell transcriptomic analysis of mouse neocortical development , 2019, Nature Communications.

[130]  A. Consiglio,et al.  Patient-Specific iPSC-Derived Astrocytes Contribute to Non-Cell-Autonomous Neurodegeneration in Parkinson's Disease , 2019, Stem cell reports.

[131]  Michael S. Fernandopulle,et al.  CRISPR Interference-Based Platform for Multimodal Genetic Screens in Human iPSC-Derived Neurons , 2019, Neuron.

[132]  Timothy J. Hohman,et al.  Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk , 2019, Nature Genetics.

[133]  J. Hardy,et al.  Genetic variability in response to amyloid beta deposition influences Alzheimer’s disease risk , 2019, Brain communications.

[134]  Robert V Farese,et al.  Lipidomic Analysis of α-Synuclein Neurotoxicity Identifies Stearoyl CoA Desaturase as a Target for Parkinson Treatment. , 2018, Molecular cell.

[135]  D. Holtzman,et al.  Loss of TREM2 function increases amyloid seeding but reduces plaque associated ApoE , 2018, Nature Neuroscience.

[136]  Maria Zhu,et al.  White matter myelin profiles linked to clinical subtypes of Parkinson's disease , 2018, Journal of magnetic resonance imaging : JMRI.

[137]  A. Verkhratsky,et al.  Astroglia in Alzheimer's Disease. , 2019, Advances in experimental medicine and biology.

[138]  Sueli Marques,et al.  Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis , 2018, Nature Medicine.

[139]  M. Filippi,et al.  Multiple sclerosis , 2018, Nature Reviews Disease Primers.

[140]  Michael J. T. Stubbington,et al.  Single-cell reconstruction of the early maternal–fetal interface in humans , 2018, Nature.

[141]  I. Ferrer,et al.  Aging‐related tau astrogliopathy (ARTAG): not only tau phosphorylation in astrocytes , 2018, Brain pathology.

[142]  M. Nalls,et al.  Moving beyond neurons: the role of cell type-specific gene regulation in Parkinson’s disease heritability , 2018, bioRxiv.

[143]  M. Schwartz,et al.  Targeting neuro–immune communication in neurodegeneration: Challenges and opportunities , 2018, The Journal of experimental medicine.

[144]  Lars E. Borm,et al.  Spatial organization of the somatosensory cortex revealed by osmFISH , 2018, Nature Methods.

[145]  Derek H. Oakley,et al.  The role of microglia in processing and spreading of bioactive tau seeds in Alzheimer’s disease , 2018, Journal of Neuroinflammation.

[146]  F. Bosco,et al.  The “Frail” Brain Blood Barrier in Neurodegenerative Diseases: Role of Early Disruption of Endothelial Cell-to-Cell Connections , 2018, International journal of molecular sciences.

[147]  P. Verstreken,et al.  A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain , 2018, Cell.

[148]  Mauro J. Muraro,et al.  Mapping the physical network of cellular interactions , 2018, Nature Methods.

[149]  Mauro J. Muraro,et al.  Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells , 2018, bioRxiv.

[150]  John L. Robinson,et al.  Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated , 2018, Brain : a journal of neurology.

[151]  P. Verstreken,et al.  ER Lipid Defects in Neuropeptidergic Neurons Impair Sleep Patterns in Parkinson’s Disease , 2018, Neuron.

[152]  I. Amit,et al.  Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration , 2018, Cell.

[153]  I. Amit,et al.  Microglial immune checkpoint mechanisms , 2018, Nature Neuroscience.

[154]  Z. Mari,et al.  Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease , 2018, Nature Medicine.

[155]  Lars E. Borm,et al.  Molecular Architecture of the Mouse Nervous System , 2018, Cell.

[156]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[157]  C. Jack,et al.  NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease , 2018, Alzheimer's & Dementia.

[158]  Giovanni Rizzo,et al.  Diagnostic Criteria for Parkinson’s Disease: From James Parkinson to the Concept of Prodromal Disease , 2018, Front. Neurol..

[159]  A. Brickman,et al.  White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes , 2018, Acta neuropathologica communications.

[160]  J. Satoh,et al.  Alzheimer's disease pathology in Nasu-Hakola disease brains. , 2018, Intractable & rare diseases research.

[161]  J. Hanson,et al.  Microglia in Alzheimer’s disease , 2018, The Journal of cell biology.

[162]  Boaz Styr,et al.  Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease , 2018, Nature Neuroscience.

[163]  M. Nedergaard,et al.  The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future. , 2018, Annual review of pathology.

[164]  T. Furuta,et al.  Pathological Endogenous α-Synuclein Accumulation in Oligodendrocyte Precursor Cells Potentially Induces Inclusions in Multiple System Atrophy , 2018, Stem cell reports.

[165]  S. Terada,et al.  Astrocytic Tau Pathologies in Argyrophilic Grain Disease and Related Four-repeat Tauopathies. , 2018, Acta medica Okayama.

[166]  A. Messing Alexander disease. , 2018, Handbook of clinical neurology.

[167]  Eyal David,et al.  Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq , 2017, Science.

[168]  T. Raj,et al.  Prioritizing Parkinson’s disease genes using population-scale transcriptomic data , 2017, bioRxiv.

[169]  B. Stevens,et al.  Microglia: The Brain’s First Responders , 2017, Cerebrum : the Dana forum on brain science.

[170]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[171]  K. Zaghloul,et al.  Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI , 2017, eLife.

[172]  Markus Glatzel,et al.  The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. , 2017, Immunity.

[173]  Vanessa M. Peterson,et al.  Multiplexed quantification of proteins and transcripts in single cells , 2017, Nature Biotechnology.

[174]  A. Hicks,et al.  CADPS2 gene expression is oppositely regulated by LRRK2 and alpha-synuclein. , 2017, Biochemical and biophysical research communications.

[175]  F. Ginhoux,et al.  Induced‐Pluripotent‐Stem‐Cell‐Derived Primitive Macrophages Provide a Platform for Modeling Tissue‐Resident Macrophage Differentiation and Function , 2017, Immunity.

[176]  E. H. Howlett,et al.  Extensive uptake of α-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage , 2017, Molecular and Cellular Neuroscience.

[177]  K. Hao,et al.  A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease , 2017, Nature Neuroscience.

[178]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[179]  D. Kober,et al.  TREM2-Ligand Interactions in Health and Disease. , 2017, Journal of molecular biology.

[180]  R. Wade-Martins,et al.  The Role of Astrocyte Dysfunction in Parkinson’s Disease Pathogenesis , 2017, Trends in Neurosciences.

[181]  G. Sanguinetti,et al.  scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells , 2018, Nature Communications.

[182]  P. Verstreken,et al.  The SAC1 domain in synaptojanin is required for autophagosome maturation at presynaptic terminals , 2017, The EMBO journal.

[183]  Michael D. Cahalan,et al.  iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases , 2017, Neuron.

[184]  Amaia M. Arranz,et al.  Hallmarks of Alzheimer’s Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain , 2017, Neuron.

[185]  Geoffrey M. Barrett,et al.  Tau Pathology Induces Excitatory Neuron Loss, Grid Cell Dysfunction, and Spatial Memory Deficits Reminiscent of Early Alzheimer’s Disease , 2017, Neuron.

[186]  D. James Surmeier,et al.  Selective neuronal vulnerability in Parkinson disease , 2017, Nature Reviews Neuroscience.

[187]  Manoj Kumar,et al.  INGE GRUNDKE-IQBAL AWARD FOR ALZHEIMER’S RESEARCH: NEUROTOXIC REACTIVE ASTROCYTES ARE INDUCED BY ACTIVATED MICROGLIA , 2019, Alzheimer's & Dementia.

[188]  André F. Rendeiro,et al.  Pooled CRISPR screening with single-cell transcriptome read-out , 2017, Nature Methods.

[189]  J. Volkmann,et al.  Parkinson disease , 2017, Nature Reviews Disease Primers.

[190]  Sterling C. Johnson,et al.  Association of Amyloid Pathology With Myelin Alteration in Preclinical Alzheimer Disease , 2017, JAMA neurology.

[191]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[192]  F. Barrantes,et al.  Pharmacotherapies for Parkinson’s disease symptoms related to cholinergic degeneration , 2016, Expert opinion on pharmacotherapy.

[193]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[194]  Jens Hjerling-Leffler,et al.  Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system , 2016, Science.

[195]  E. Masliah,et al.  Meta-analysis of synaptic pathology in Alzheimer's disease reveals selective molecular vesicular machinery vulnerability , 2016, Alzheimer's & Dementia.

[196]  S. A. Hussaini,et al.  Neuronal activity enhances tau propagation and tau pathology in vivo , 2016, Nature Neuroscience.

[197]  M. Vila,et al.  Functional Rescue of Dopaminergic Neuron Loss in Parkinson's Disease Mice After Transplantation of Hematopoietic Stem and Progenitor Cells , 2016, EBioMedicine.

[198]  P. Verstreken,et al.  Membrane Lipids in Presynaptic Function and Disease , 2016, Neuron.

[199]  Eric Karran,et al.  The Cellular Phase of Alzheimer’s Disease , 2016, Cell.

[200]  G. Wenning,et al.  Review: Multiple system atrophy: emerging targets for interventional therapies , 2016, Neuropathology and applied neurobiology.

[201]  E. Chang,et al.  Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse , 2016, Neuron.

[202]  B. Zlokovic,et al.  Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[203]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[204]  Zhen Zhao,et al.  Establishment and Dysfunction of the Blood-Brain Barrier , 2015, Cell.

[205]  G. Deuschl,et al.  MDS clinical diagnostic criteria for Parkinson's disease , 2015, Movement disorders : official journal of the Movement Disorder Society.

[206]  Elie Needle,et al.  Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression. , 2015, Human molecular genetics.

[207]  M. Nedergaard,et al.  Modeling cognition and disease using human glial chimeric mice , 2015, Glia.

[208]  Kaanan P. Shah,et al.  A gene-based association method for mapping traits using reference transcriptome data , 2015, Nature Genetics.

[209]  J. Winkler,et al.  Oligodendroglia and Myelin in Neurodegenerative Diseases: More Than Just Bystanders? , 2015, Molecular Neurobiology.

[210]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[211]  F. Cicchetti,et al.  Defining midbrain dopaminergic neuron diversity by single-cell gene expression profiling. , 2014, Cell reports.

[212]  M. Viitanen,et al.  CADASIL and CARASIL , 2014, Brain pathology.

[213]  P. Lucassen,et al.  Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients , 2014, Acta Neuropathologica Communications.

[214]  P. Brundin,et al.  Alpha‐synuclein transfers from neurons to oligodendrocytes , 2014, Glia.

[215]  A. Singleton,et al.  TREM2 variants in Alzheimer's disease. , 2013, The New England journal of medicine.

[216]  A. Hofman,et al.  Variant of TREM2 associated with the risk of Alzheimer's disease. , 2013, The New England journal of medicine.

[217]  D. Surmeier,et al.  Neuronal vulnerability, pathogenesis, and Parkinson's disease , 2013, Movement disorders : official journal of the Movement Disorder Society.

[218]  M Mancuso,et al.  Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease , 2012, Molecular Psychiatry.

[219]  Pierre J. Magistretti,et al.  Oligodendroglia metabolically support axons and contribute to neurodegeneration , 2012, Nature.

[220]  Peijia Li,et al.  Transplantation of oligodendrocyte precursor cells improves myelination and promotes functional recovery after spinal cord injury. , 2012, Injury.

[221]  Ben A. Barres,et al.  Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner , 2012, Neuron.

[222]  Jens Frahm,et al.  Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity , 2012, Nature.

[223]  B. Zlokovic Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders , 2011, Nature Reviews Neuroscience.

[224]  Eric M. Blalock,et al.  Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer's disease , 2011, Journal of Chemical Neuroanatomy.

[225]  M. Giustetto,et al.  Synaptic Pruning by Microglia Is Necessary for Normal Brain Development , 2011, Science.

[226]  P. Bosco,et al.  APOE and Alzheimer disease: a major gene with semi-dominant inheritance , 2011, Molecular Psychiatry.

[227]  W. Bowers,et al.  An Alzheimer's disease‐relevant presenilin‐1 mutation augments amyloid‐beta‐induced oligodendrocyte dysfunction , 2011, Glia.

[228]  P. Damier,et al.  Colonic Biopsies to Assess the Neuropathology of Parkinson's Disease and Its Relationship with Symptoms , 2010, PloS one.

[229]  Deborah A. Ryan,et al.  Early oligodendrocyte/myelin pathology in Alzheimer's disease mice constitutes a novel therapeutic target. , 2010, The American journal of pathology.

[230]  Seung-Jae Lee,et al.  Alpha-synuclein stimulation of astrocytes , 2010, Oxidative medicine and cellular longevity.

[231]  H. Cai,et al.  Astrocytic expression of Parkinson's disease-related A53T α-synuclein causes neurodegeneration in mice , 2010, Molecular Brain.

[232]  E. Masliah,et al.  Direct Transfer of α-Synuclein from Neuron to Astroglia Causes Inflammatory Responses in Synucleinopathies* , 2010, The Journal of Biological Chemistry.

[233]  A. Smith,et al.  Genome wide profiling of altered gene expression in the neocortex of Alzheimer's disease , 2009, Journal of neuroscience research.

[234]  Luis Serrano,et al.  Correlation of mRNA and protein in complex biological samples , 2009, FEBS letters.

[235]  E. Marcotte,et al.  Global signatures of protein and mRNA expression levelsw , 2009 .

[236]  Nick C Fox,et al.  Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease, and shows evidence for additional susceptibility genes , 2009, Nature Genetics.

[237]  Jose Julio Rodriguez,et al.  Astroglia in dementia and Alzheimer's disease , 2009, Cell Death and Differentiation.

[238]  B. Hyman,et al.  Synchronous Hyperactivity and Intercellular Calcium Waves in Astrocytes in Alzheimer Mice , 2009, Science.

[239]  W. Bowers,et al.  Triple‐transgenic Alzheimer's disease mice exhibit region‐specific abnormalities in brain myelination patterns prior to appearance of amyloid and tau pathology , 2009, Glia.

[240]  Arthur Konnerth,et al.  Clusters of Hyperactive Neurons Near Amyloid Plaques in a Mouse Model of Alzheimer's Disease , 2008, Science.

[241]  Milos Pekny,et al.  Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury , 2006, Proceedings of the National Academy of Sciences.

[242]  David Walker,et al.  Profile and Regulation of Apolipoprotein E (ApoE) Expression in the CNS in Mice with Targeting of Green Fluorescent Protein Gene to the ApoE Locus , 2006, The Journal of Neuroscience.

[243]  T. Tamiya,et al.  Neural stem cells transplantation in cortex in a mouse model of Alzheimer's disease. , 2006, The journal of medical investigation : JMI.

[244]  L. Fratiglioni,et al.  Role of genes and environments for explaining Alzheimer disease. , 2006, Archives of general psychiatry.

[245]  N. Schuff,et al.  Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. , 2005, Radiology.

[246]  Thomas Meitinger,et al.  Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology , 2004, Neuron.

[247]  Andrew Lees,et al.  Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson's Disease , 2004, Neuron.

[248]  H. Braak,et al.  Poor and protracted myelination as a contributory factor to neurodegenerative disorders , 2004, Neurobiology of Aging.

[249]  Frederik Barkhof,et al.  White matter lesions and hippocampal atrophy in Alzheimer’s disease , 2004, Neurology.

[250]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[251]  H. Braak,et al.  Staging of brain pathology related to sporadic Parkinson’s disease , 2003, Neurobiology of Aging.

[252]  Chao Zhao,et al.  The Age-Related Decrease in CNS Remyelination Efficiency Is Attributable to an Impairment of Both Oligodendrocyte Progenitor Recruitment and Differentiation , 2002, The Journal of Neuroscience.

[253]  M. Goldberg,et al.  Amyloid-β Peptides Are Cytotoxic to Oligodendrocytes , 2001, The Journal of Neuroscience.

[254]  H. Braak,et al.  Vulnerability of Select Neuronal Types to Alzheimer's Disease , 2000, Annals of the New York Academy of Sciences.

[255]  B. Hyman,et al.  Modulation of Aβ Deposition in APP Transgenic Mice by an Apolipoprotein E Null Background , 2000, Annals of the New York Academy of Sciences.

[256]  S. Hayashi,et al.  NACP/α-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains , 2000, Acta Neuropathologica.

[257]  H. Braak,et al.  Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis , 1996, Acta Neuropathologica.

[258]  R. Stelzmann,et al.  An english translation of alzheimer's 1907 paper, “über eine eigenartige erkankung der hirnrinde” , 1995, Clinical anatomy.

[259]  T. Joh,et al.  Neuropathology of immunohistochemically identified brainstem neurons in Parkinson's disease , 1990, Annals of neurology.

[260]  P. Mcgeer,et al.  Reactive microglia are positive for HLA‐DR in the substantia nigra of Parkinson's and Alzheimer's disease brains , 1988, Neurology.

[261]  J. Coyle,et al.  Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. , 1982, Science.

[262]  L. Tsypkin [Microglial reaction in senile dementia and the role of the microglia in the structural genesis of senile plaques]. , 1959, Zhurnal nevropatologii i psikhiatrii imeni S.S. Korsakova.

[263]  A. Alzheimer Uber eine eigenartige Erkrankung der Hirnrinde , 1907 .