Fractional-order integral and derivative controller for temperature profile tracking

This paper establishes a new strategy to tune a fractional order integral and derivative (ID) controller satisfying gain and phase margins based on Bode’s ideal transfer function as a reference model, for a temperature profile tracking. A systematic analysis resulting in a non-linear equation relating user-defined gain and phase margins to the fractional order controller is derived. The closed-loop system designed has a feature of robustness to gain variations with step responses exhibiting a nearly iso-damping property. This paper aims to apply the analytical tuning procedure to control the heat flow systems at selected points in Quanser experimental platform. Thus, the main purpose of this paper is to examine performances of two different fractional order controllers in temperature profile tracking. From experimental comparisons with the traditional PI/PID controller based on Ziegler-Nichols’ tuning method, it will be shown that the proposed methodologies are specifically beneficial in controlling temperature in time-delay heat flow systems.

[1]  A. Oustaloup La dérivation non entière , 1995 .

[2]  Jun-Guo Lu,et al.  Stability Analysis of a Class of Nonlinear Fractional-Order Systems , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  Chyi Hwang,et al.  A note on time-domain simulation of feedback fractional-order systems , 2002, IEEE Trans. Autom. Control..

[4]  I. Podlubny,et al.  On fractional derivatives, fractional-order dynamic systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[5]  Alain Oustaloup,et al.  Fractional order sinusoidal oscillators: Optimization and their use in highly linear FM modulation , 1981 .

[6]  Manuel Ortigueira,et al.  Special Issue on Fractional signal Processing and applications , 2003 .

[7]  P.M. Ramos,et al.  A low-cost temperature controlled system to test and characterize sensors , 2004, 2004 IEEE Africon. 7th Africon Conference in Africa (IEEE Cat. No.04CH37590).

[8]  Karl Henrik Johansson,et al.  Design of decoupled PI controllers for two-by-two systems , 2002 .

[9]  K.J. Astrom,et al.  Design of PID controllers based on constrained optimization , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[10]  Jeng-Fan Leu,et al.  Design of Optimal Fractional-Order PID Controllers , 2002 .

[11]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[12]  José António Tenreiro Machado,et al.  Fractional signal processing and applications , 2003, Signal Process..

[13]  Alain Oustaloup,et al.  On the CRONE Suspension , 2014 .

[14]  Gary W. Bohannan Analog fractional order controller in a temperature control application , 2006 .

[15]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[16]  M. E. Bise,et al.  Fractional calculus application in control systems , 1990, IEEE Conference on Aerospace and Electronics.

[17]  B. Vinagre Practical application of digital fractional-order controller to temperature control , 2002 .

[18]  Lokenath Debnath,et al.  A brief historical introduction to fractional calculus , 2004 .

[19]  K.J. ÅSTRÖM,et al.  Design of PI Controllers based on Non-Convex Optimization , 1998, Autom..

[20]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[21]  Vicente Feliu,et al.  On Fractional PID Controllers: A Frequency Domain Approach , 2000 .

[22]  Ching-Chih Tsai,et al.  Multivariable self-tuning temperature control for plastic injection molding process , 1998 .

[23]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[24]  Chia-Feng Juang,et al.  A recurrent neural fuzzy network controller for a temperature control system , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[25]  Tore Hägglund,et al.  Design of PID controllers based on constrained optimization , 1999 .

[26]  I. Podlubny,et al.  On Fractional Derivatives, Fractional-Order Dynamic Systems and PIW-controllers , 1997 .

[27]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[28]  D. Debeljkovic,et al.  FINITE TIME STABILITY ANALYSIS OF LINEAR AUTONOMOUS FRACTIONAL ORDER SYSTEMS WITH DELAYED STATE , 2005 .

[29]  Dingyu Xue,et al.  PRACTICAL TUNING OF FRACTIONAL ORDER PROPORTIONAL AND INTEGRAL CONTROLLER (I): TUNING RULE DEVELOPMENT , 2007 .

[30]  Jiangjiang Wang,et al.  Study of Neural Network PID Control in Variable-frequency Air-conditioning System , 2007, 2007 IEEE International Conference on Control and Automation.

[31]  Yangquan Chen,et al.  Fractional Calculus and Biomimetic Control , 2004, 2004 IEEE International Conference on Robotics and Biomimetics.

[32]  Anissa Zergaïnoh-Mokraoui,et al.  State-space representation for fractional order controllers , 2000, Autom..

[33]  J. Bordeneuve,et al.  Temperature control in a rapid thermal processor , 1992 .

[34]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .

[35]  Samuel Paolucci,et al.  Approximation of transient temperatures in complex geometries using fractional derivatives , 2008 .

[36]  Guanrong Chen,et al.  Fuzzy PID control of a flexible-joint robot arm with uncertainties from time-varying loads , 1997, IEEE Trans. Control. Syst. Technol..

[37]  Dingyu Xue,et al.  Optimal Fractional Order Proportional Integral Controller for Varying Time-Delay Systems , 2008 .

[38]  YangQuan Chen,et al.  Fractional-order integral and derivative controller design for temperature profile control , 2008, 2008 Chinese Control and Decision Conference.

[39]  Chin-Teng Lin,et al.  Temperature control with a neural fuzzy inference network , 1999, IEEE Trans. Syst. Man Cybern. Part C.

[40]  Kim-Fung Man,et al.  An optimal fuzzy PID controller , 2001, IEEE Trans. Ind. Electron..