A mathematical model for zoning of protected natural areas
暂无分享,去创建一个
M. Sabatini | María C. Maciel | Adriana B. Verdiell | R. M. Rodriguez Iglesias | M. C. Maciel | R. R. Iglesias | A. Verdiell | M. Sabatini
[1] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988, Wiley interscience series in discrete mathematics and optimization.
[2] J. Fa,et al. Herbivore intake/habitat productivity correlations can help ascertain re-introduction potential for the Barbary macaque , 1994, Biodiversity & Conservation.
[3] C. D. Gelatt,et al. Optimization by Simulated Annealing , 1983, Science.
[4] Jan Bos,et al. Zoning in Forest Management: a Quadratic Assignment Problem Solved by Simulated Annealing , 1993 .
[5] R. Burkard. Quadratic Assignment Problems , 1984 .
[6] Antonio Cendrero,et al. Environmental diagnosis for planning and management in the high Andean region: The biosphere reserve of Pozuelos, Argentina , 1993 .
[7] M. del C. Sabatini,et al. A global context for the evolution and current status of protected areas in Argentina. , 2001 .
[8] Alistair I. Mees,et al. Convergence of an annealing algorithm , 1986, Math. Program..
[9] D. de Werra,et al. A tutorial on heuristic methods , 1980 .
[10] Franz Rendl,et al. A New Lower Bound Via Projection for the Quadratic Assignment Problem , 1992, Math. Oper. Res..
[11] David Connolly. An improved annealing scheme for the QAP , 1990 .
[12] Ehl Emile Aarts,et al. Statistical cooling : a general approach to combinatorial optimization problems , 1985 .
[13] F. Rendl,et al. A thermodynamically motivated simulation procedure for combinatorial optimization problems , 1984 .