Two-dimensional materials for next-generation computing technologies

Rapid digital technology advancement has resulted in a tremendous increase in computing tasks imposing stringent energy efficiency and area efficiency requirements on next-generation computing. To meet the growing data-driven demand, in-memory computing and transistor-based computing have emerged as potent technologies for the implementation of matrix and logic computing. However, to fulfil the future computing requirements new materials are urgently needed to complement the existing Si complementary metal–oxide–semiconductor technology and new technologies must be developed to enable further diversification of electronics and their applications. The abundance and rich variety of electronic properties of two-dimensional materials have endowed them with the potential to enhance computing energy efficiency while enabling continued device downscaling to a feature size below 5 nm. In this Review, from the perspective of matrix and logic computing, we discuss the opportunities, progress and challenges of integrating two-dimensional materials with in-memory computing and transistor-based computing technologies. This Review discusses the recent progress and future prospects of two-dimensional materials for next-generation nanoelectronics.

[1]  K. F. Lee,et al.  Scaling the Si MOSFET: from bulk to SOI to bulk , 1992 .

[2]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[3]  T. Numata,et al.  Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm , 2002, Digest. International Electron Devices Meeting,.

[4]  C. Hu,et al.  Germanium-source tunnel field effect transistors with record high ION/IOFF , 2006, 2009 Symposium on VLSI Technology.

[5]  T. Tezuka,et al.  Electron Transport Properties of Ultrathin-body and Tri-gate SOI nMOSFETs with Biaxial and Uniaxial Strain , 2006, 2006 International Electron Devices Meeting.

[6]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[7]  P. Avouris,et al.  Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene , 2009, 0908.0749.

[8]  H. Dai,et al.  Selective etching of graphene edges by hydrogen plasma. , 2010, Journal of the American Chemical Society.

[9]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[10]  C. Hu,et al.  Si tunnel transistors with a novel silicided source and 46mV/dec swing , 2010, 2010 Symposium on VLSI Technology.

[11]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[12]  Qin Zhang,et al.  Low-Voltage Tunnel Transistors for Beyond CMOS Logic , 2010, Proceedings of the IEEE.

[13]  R. Rooyackers,et al.  Performance Enhancement in Multi Gate Tunneling Field Effect Transistors by Scaling the Fin-Width , 2010 .

[14]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[15]  F. Xia,et al.  The origins and limits of metal-graphene junction resistance. , 2011, Nature nanotechnology.

[16]  Adrian M. Ionescu,et al.  Tunnel field-effect transistors as energy-efficient electronic switches , 2011, Nature.

[17]  C. Hu,et al.  Ferroelectric negative capacitance MOSFET: Capacitance tuning & antiferroelectric operation , 2011, 2011 International Electron Devices Meeting.

[18]  G. Dewey,et al.  Fabrication, characterization, and physics of III–V heterojunction tunneling Field Effect Transistors (H-TFET) for steep sub-threshold swing , 2011, 2011 International Electron Devices Meeting.

[19]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[20]  N. Singh,et al.  CMOS-Compatible Vertical-Silicon-Nanowire Gate-All-Around p-Type Tunneling FETs With $\leq 50$-mV/decade Subthreshold Swing , 2011, IEEE Electron Device Letters.

[21]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[22]  X. Duan,et al.  High-frequency self-aligned graphene transistors with transferred gate stacks , 2012, Proceedings of the National Academy of Sciences.

[23]  Lars Samuelson,et al.  Tunnel field-effect transistors based on InP-GaAs heterostructure nanowires. , 2012, ACS nano.

[24]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[25]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[26]  S. Trellenkamp,et al.  Inverters With Strained Si Nanowire Complementary Tunnel Field-Effect Transistors , 2013, IEEE Electron Device Letters.

[27]  Geoffrey W. Burr,et al.  Nanoscale electronic synapses using phase change devices , 2013, JETC.

[28]  Shimeng Yu,et al.  Synaptic electronics: materials, devices and applications , 2013, Nanotechnology.

[29]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[30]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[31]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[32]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[33]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[34]  Baoming Wang,et al.  Continuous Ultra-Thin MoS2 Films Grown by Low-Temperature Physical Vapor Deposition , 2014 .

[35]  A. Seabaugh,et al.  Tunnel Field-Effect Transistors: State-of-the-Art , 2014, IEEE Journal of the Electron Devices Society.

[36]  G. W. Burr,et al.  Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element , 2015, 2014 IEEE International Electron Devices Meeting.

[37]  Jaejin Lee,et al.  25.2 A 1.2V 8Gb 8-channel 128GB/s high-bandwidth memory (HBM) stacked DRAM with effective microbump I/O test methods using 29nm process and TSV , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[38]  Mark Horowitz,et al.  1.1 Computing's energy problem (and what we can do about it) , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[39]  Seungbae Park,et al.  Three-Dimensional and 2.5 Dimensional Interconnection Technology: State of the Art , 2014 .

[40]  Qing Wan,et al.  Artificial synapse network on inorganic proton conductor for neuromorphic systems. , 2014, Nature communications.

[41]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. , 2014, Nature communications.

[42]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[43]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[44]  신창환,et al.  Negative Capacitance Field-Effect Transistor의 온도별 특성 연구 , 2014 .

[45]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[46]  Takashi Taniguchi,et al.  Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. , 2014, ACS Nano.

[47]  P. Ajayan,et al.  A subthermionic tunnel field-effect transistor with an atomically thin channel , 2015, Nature.

[48]  Andras Kis,et al.  Thickness-dependent mobility in two-dimensional MoS₂ transistors. , 2015, Nanoscale.

[49]  M. Kamalakar,et al.  Low Schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. , 2015, Small.

[50]  Yang Hui Liu,et al.  Freestanding Artificial Synapses Based on Laterally Proton‐Coupled Transistors on Chitosan Membranes , 2015, Advanced materials.

[51]  Xu Cui,et al.  Highly Stable, Dual-Gated MoS2 Transistors Encapsulated by Hexagonal Boron Nitride with Gate-Controllable Contact, Resistance, and Threshold Voltage. , 2015, ACS nano.

[52]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[53]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[54]  C. Stampfer,et al.  Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper , 2015, Science Advances.

[55]  Pritish Narayanan,et al.  Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element , 2014, IEEE Transactions on Electron Devices.

[56]  Jianhua Hao,et al.  Field‐Effect Transistors Based on Amorphous Black Phosphorus Ultrathin Films by Pulsed Laser Deposition , 2015, Advanced materials.

[57]  A. Bessonov,et al.  Layered memristive and memcapacitive switches for printable electronics. , 2015, Nature materials.

[58]  Zhihao Yu,et al.  High‐Performance Monolayer WS2 Field‐Effect Transistors on High‐κ Dielectrics , 2015, Advanced materials.

[59]  Electrical characterization of fully encapsulated ultra thin black phosphorous-based heterostructures with graphene contacts , 2014, 1412.1191.

[60]  Wenhui Wang,et al.  Two-dimensional antimonene single crystals grown by van der Waals epitaxy , 2016, Nature Communications.

[61]  Zhihao Yu,et al.  Realization of Room‐Temperature Phonon‐Limited Carrier Transport in Monolayer MoS2 by Dielectric and Carrier Screening , 2015, Advanced materials.

[62]  Yongsuk Choi,et al.  Multibit MoS2 Photoelectronic Memory with Ultrahigh Sensitivity , 2016, Advanced materials.

[63]  Seongjun Park,et al.  Two-terminal floating-gate memory with van der Waals heterostructures for ultrahigh on/off ratio , 2016, Nature Communications.

[64]  Jun-Seok Park,et al.  14.6 A 1.42TOPS/W deep convolutional neural network recognition processor for intelligent IoE systems , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[65]  C. Shin,et al.  Negative Capacitance Field Effect Transistor With Hysteresis-Free Sub-60-mV/Decade Switching , 2016, IEEE Electron Device Letters.

[66]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[67]  Hua Zhang,et al.  Two-dimensional semiconductors for transistors , 2016 .

[68]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[69]  F. Xia,et al.  Anisotropic Black Phosphorus Synaptic Device for Neuromorphic Applications , 2016, Advanced materials.

[70]  K. Sun,et al.  Memristive Behavior and Ideal Memristor of 1T Phase MoS2 Nanosheets. , 2016, Nano letters.

[71]  M. H. Lee,et al.  Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[72]  Qi Liu,et al.  Eliminating Negative‐SET Behavior by Suppressing Nanofilament Overgrowth in Cation‐Based Memory , 2016, Advanced materials.

[73]  Subhasish Mitra,et al.  Three-dimensional integration of nanotechnologies for computing and data storage on a single chip , 2017, Nature.

[74]  Hong Zhou,et al.  Steep-slope hysteresis-free negative capacitance MoS2 transistors , 2017, Nature Nanotechnology.

[75]  P. Zhou,et al.  Negative capacitance 2D MoS2 transistors with sub-60mV/dec subthreshold swing over 6 orders, 250 μA/μm current density, and nearly-hysteresis-free , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[76]  Juwon Lee,et al.  Monolayer optical memory cells based on artificial trap-mediated charge storage and release , 2017, Nature Communications.

[77]  Nicolas Locatelli,et al.  Learning through ferroelectric domain dynamics in solid-state synapses , 2017, Nature Communications.

[78]  Jinxiong Wu,et al.  High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. , 2017, Nature nanotechnology.

[79]  Young Sun,et al.  A Synaptic Transistor based on Quasi‐2D Molybdenum Oxide , 2017, Advanced materials.

[80]  Jinlan Wang,et al.  Passivation of Black Phosphorus via Self‐Assembled Organic Monolayers by van der Waals Epitaxy , 2017, Advanced materials.

[81]  Barry P Rand,et al.  Extremely Low Operating Current Resistive Memory Based on Exfoliated 2D Perovskite Single Crystals for Neuromorphic Computing. , 2017, ACS nano.

[82]  M. Marinella,et al.  A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. , 2017, Nature materials.

[83]  Kunnyun Kim,et al.  A High‐On/Off‐Ratio Floating‐Gate Memristor Array on a Flexible Substrate via CVD‐Grown Large‐Area 2D Layer Stacking , 2017, Advanced materials.

[84]  Lianmao Peng,et al.  Scaling carbon nanotube complementary transistors to 5-nm gate lengths , 2017, Science.

[85]  Jing Guo,et al.  Emulating Bilingual Synaptic Response Using a Junction-Based Artificial Synaptic Device. , 2017, ACS nano.

[86]  F. Miao,et al.  Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions , 2017, Nature Communications.

[87]  Zhuo Wang,et al.  In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array , 2017, IEEE Journal of Solid-State Circuits.

[88]  Kate J. Norris,et al.  Anatomy of Ag/Hafnia‐Based Selectors with 1010 Nonlinearity , 2017, Advanced materials.

[89]  He Tian,et al.  High Performance 2D Perovskite/Graphene Optical Synapses as Artificial Eyes , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[90]  Michael A. McGuire,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[91]  Miguel Angel Lastras-Montaño,et al.  Resistive random-access memory based on ratioed memristors , 2018, Nature Electronics.

[92]  Arindam Basu,et al.  Synergistic Gating of Electro‐Iono‐Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity , 2018, Advanced materials.

[93]  Meng He,et al.  Artificial Synapses Emulated by an Electrolyte‐Gated Tungsten‐Oxide Transistor , 2018, Advanced materials.

[94]  X. Duan,et al.  Two-dimensional transistors beyond graphene and TMDCs. , 2018, Chemical Society reviews.

[95]  P. Ye Steep-Slope Hysteresis-Free Negative-Capacitance 2D Transistors , 2018, 2018 76th Device Research Conference (DRC).

[96]  Mengwei Si,et al.  Steep-Slope WSe2 Negative Capacitance Field-Effect Transistor. , 2018, Nano letters.

[97]  Yongli He,et al.  Electric-double-layer transistors for synaptic devices and neuromorphic systems , 2018 .

[98]  Sujan Kumar Gonugondla,et al.  A Multi-Functional In-Memory Inference Processor Using a Standard 6T SRAM Array , 2018, IEEE Journal of Solid-State Circuits.

[99]  Pritish Narayanan,et al.  Equivalent-accuracy accelerated neural-network training using analogue memory , 2018, Nature.

[100]  F. Zhang,et al.  Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories , 2018, Nature Materials.

[101]  J. Yang,et al.  Robust memristors based on layered two-dimensional materials , 2018, 1801.00530.

[102]  M. Hersam,et al.  Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide , 2018, Nature.

[103]  Ping Yang,et al.  Epitaxial Ferroelectric Hf0.5Zr0.5O2 Thin Films and Their Implementations in Memristors for Brain‐Inspired Computing , 2018, Advanced Functional Materials.

[104]  H. Peng,et al.  Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches , 2018, Science.

[105]  Shimeng Yu,et al.  Neuro-Inspired Computing With Emerging Nonvolatile Memorys , 2018, Proceedings of the IEEE.

[106]  H.-S. Philip Wong,et al.  In-memory computing with resistive switching devices , 2018, Nature Electronics.

[107]  Hitoshi Kubota,et al.  Neural-like computing with populations of superparamagnetic basis functions , 2016, Nature Communications.

[108]  M. Yun,et al.  Low‐Power, Electrochemically Tunable Graphene Synapses for Neuromorphic Computing , 2018, Advanced materials.

[109]  Eric Pop,et al.  Electronic synapses made of layered two-dimensional materials , 2018, Nature Electronics.

[110]  Nagarajan Raghavan,et al.  Recommended Methods to Study Resistive Switching Devices , 2018, Advanced Electronic Materials.

[111]  Farnood Merrikh-Bayat,et al.  High-Performance Mixed-Signal Neurocomputing With Nanoscale Floating-Gate Memory Cell Arrays , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[112]  Zaiyao Fei,et al.  Ferroelectric switching of a two-dimensional metal , 2018, Nature.

[113]  Lei Liu,et al.  Two-dimensional multibit optoelectronic memory with broadband spectrum distinction , 2018, Nature Communications.

[114]  H-S Philip Wong,et al.  Artificial optic-neural synapse for colored and color-mixed pattern recognition , 2018, Nature Communications.

[115]  Yi Shi,et al.  Light Stimulated IGZO-Based Electric-Double-Layer Transistors For Photoelectric Neuromorphic Devices , 2018, IEEE Electron Device Letters.

[116]  Young Sun,et al.  All‐Solid‐State Synaptic Transistor with Ultralow Conductance for Neuromorphic Computing , 2018, Advanced Functional Materials.

[117]  Jung Min Lee,et al.  Synaptic Barristor Based on Phase‐Engineered 2D Heterostructures , 2018, Advanced materials.

[118]  Wei D. Lu,et al.  Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing , 2018, Nature Materials.

[119]  Yuchao Yang,et al.  Ion Gated Synaptic Transistors Based on 2D van der Waals Crystals with Tunable Diffusive Dynamics , 2018, Advanced materials.

[120]  S. Mozaffari,et al.  Superconducting phase diagram of H3S under high magnetic fields , 2019, Nature Communications.

[121]  X. Duan,et al.  Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices , 2019 .

[122]  Bai-Sun Kong,et al.  Self-selective van der Waals heterostructures for large scale memory array , 2019, Nature Communications.

[123]  C. Ross,et al.  Crested two-dimensional transistors , 2019, Nature Nanotechnology.

[124]  Jr-hau He,et al.  Gate‐Tunable and Multidirection‐Switchable Memristive Phenomena in a Van Der Waals Ferroelectric , 2019, Advanced materials.

[125]  Chunsen Liu,et al.  Small footprint transistor architecture for photoswitching logic and in situ memory , 2019, Nature Nanotechnology.

[126]  M. Berggren,et al.  An Evolvable Organic Electrochemical Transistor for Neuromorphic Applications , 2019, Advanced science.

[127]  Sen Song,et al.  Bridging Biological and Artificial Neural Networks with Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges , 2019, Advanced materials.

[128]  Anantha Chandrakasan,et al.  Modern microprocessor built from complementary carbon nanotube transistors , 2019, Nature.

[129]  Weisheng Zhao,et al.  Two-dimensional spintronics for low-power electronics , 2019, Nature Electronics.

[130]  Jingyu Li,et al.  A Photoelectric-Stimulated MoS2 Transistor for Neuromorphic Engineering , 2019, Research.

[131]  J. Yang,et al.  Memristive crossbar arrays for brain-inspired computing , 2019, Nature Materials.

[132]  G. Ryu,et al.  Striated 2D Lattice with Sub‐nm 1D Etch Channels by Controlled Thermally Induced Phase Transformations of PdSe2 , 2019, Advanced materials.

[133]  Yu Huang,et al.  Van der Waals integration before and beyond two-dimensional materials , 2019, Nature.

[134]  Xin Huang,et al.  Artificial Synapses Based on Multiterminal Memtransistors for Neuromorphic Application , 2019, Advanced Functional Materials.

[135]  H. Sirringhaus,et al.  Selective UV‐Gating Organic Memtransistors with Modulable Levels of Synaptic Plasticity , 2019, Advanced Electronic Materials.

[136]  P. Ye,et al.  A ferroelectric semiconductor field-effect transistor , 2018, Nature Electronics.

[137]  David-Wei Zhang,et al.  A MoS2/PTCDA Hybrid Heterojunction Synapse with Efficient Photoelectric Dual Modulation and Versatility , 2018, Advanced materials.

[138]  Jun Xu,et al.  MoS2 Memtransistors Fabricated by Localized Helium Ion Beam Irradiation. , 2019, ACS nano.

[139]  X. Duan,et al.  High-Performance Black Phosphorus Field-Effect Transistors with Long-Term Air Stability. , 2018, Nano letters.

[140]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[141]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[142]  Hao Zhu,et al.  Ultralow Power Wearable Heterosynapse with Photoelectric Synergistic Modulation , 2020, Advanced science.

[143]  Dmitry K. Polyushkin,et al.  Ultrafast machine vision with 2D material neural network image sensors , 2020, Nature.

[144]  Mark C. Hersam,et al.  Neuromorphic nanoelectronic materials , 2020, Nature Nanotechnology.

[145]  M. Stiles,et al.  Neuromorphic spintronics , 2020, Nature Electronics.

[146]  Seungho Kim,et al.  Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches , 2020, Nature Nanotechnology.