Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole.

[1]  Xiaokui Li,et al.  Impairment of Diazoxide-Induced Formation of Reactive Oxygen Species and Loss of Cardioprotection in Connexin 43 Deficient Mice , 2005, Circulation research.

[2]  S. Korsmeyer,et al.  Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Minucci,et al.  Electron Transfer between Cytochrome c and p66Shc Generates Reactive Oxygen Species that Trigger Mitochondrial Apoptosis , 2005, Cell.

[4]  R. Youle,et al.  Mitochondrial fission in apoptosis , 2005, Nature Reviews Molecular Cell Biology.

[5]  A. Kowaltowski,et al.  Letter regarding article by Argaud et al, "postconditioning inhibits mitochondrial permeability transition". , 2005, Circulation.

[6]  P. Bernardi,et al.  Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D* , 2005, Journal of Biological Chemistry.

[7]  P. Bernardi,et al.  Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. , 2005, Cardiovascular research.

[8]  A. Halestrap,et al.  A pore way to die , 2005 .

[9]  Jeffrey Robbins,et al.  Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death , 2005, Nature.

[10]  Tetsuya Watanabe,et al.  Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death , 2005, Nature.

[11]  L. Argaud,et al.  Postconditioning Inhibits Mitochondrial Permeability Transition , 2005, Circulation.

[12]  Young-Jae Nam,et al.  The Mitochondrial Death Pathway and Cardiac Myocyte Apoptosis , 2004, Circulation research.

[13]  A. Halestrap Does the mitochondrial permeability transition have a role in preconditioning? , 2004, Circulation.

[14]  M. Soriano,et al.  Desensitization of the Permeability Transition Pore by Cyclosporin A Prevents Activation of the Mitochondrial Apoptotic Pathway and Liver Damage by Tumor Necrosis Factor-α* , 2004, Journal of Biological Chemistry.

[15]  A. Halestrap Mitochondrial permeability: Dual role for the ADP/ATP translocator? , 2004, Nature.

[16]  M. Duchen,et al.  Preconditioning protects by inhibiting the mitochondrial permeability transition. , 2004, American journal of physiology. Heart and circulatory physiology.

[17]  M. Mirabet,et al.  Glycine protects cardiomyocytes against lethal reoxygenation injury by inhibiting mitochondrial permeability transition , 2004, The Journal of physiology.

[18]  D. Allison,et al.  Physiology: Does gut hormone PYY3–36 decrease food intake in rodents? , 2004, Nature.

[19]  M. Prato,et al.  Arachidonic Acid Released by Phospholipase A2 Activation Triggers Ca2+-dependent Apoptosis through the Mitochondrial Pathway* , 2004, Journal of Biological Chemistry.

[20]  E. Olson,et al.  Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore , 2004 .

[21]  E. Murphy Inhibit GSK-3 or theres heartbreak dead ahead , 2004 .

[22]  M. Duchen,et al.  Transient Mitochondrial Permeability Transition Pore Opening Mediates Preconditioning-Induced Protection , 2004, Circulation.

[23]  S. Javadov,et al.  Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. , 2004, Cardiovascular research.

[24]  D. Garcia-Dorado Myocardial reperfusion injury: a new view. , 2004, Cardiovascular research.

[25]  D. Yellon,et al.  New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. , 2004, Cardiovascular research.

[26]  Dean P. Jones,et al.  The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore , 2004, Nature.

[27]  E. Murphy,et al.  Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. , 2004, Circulation research.

[28]  Brian O'Rourke,et al.  Synchronized Whole Cell Oscillations in Mitochondrial Metabolism Triggered by a Local Release of Reactive Oxygen Species in Cardiac Myocytes* , 2003, Journal of Biological Chemistry.

[29]  Peipei Ping,et al.  Role of the mitochondrial permeability transition in myocardial disease. , 2003, Circulation research.

[30]  C. Brenner,et al.  The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. , 2003, Current medicinal chemistry.

[31]  S. Javadov,et al.  Ischaemic Preconditioning Inhibits Opening of Mitochondrial Permeability Transition Pores in the Reperfused Rat Heart , 2003, The Journal of physiology.

[32]  Lihua He,et al.  Heat Shock Suppresses the Permeability Transition in Rat Liver Mitochondria* , 2003, The Journal of Biological Chemistry.

[33]  P. Ping,et al.  Protein Kinase C&egr; Interacts With and Inhibits the Permeability Transition Pore in Cardiac Mitochondria , 2003, Circulation research.

[34]  D. Yellon,et al.  The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. , 2003, Journal of molecular and cellular cardiology.

[35]  V. Borutaite,et al.  Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia. , 2003, Journal of molecular and cellular cardiology.

[36]  F. Petrat,et al.  NAD(P)H, a Primary Target of 1O2 in Mitochondria of Intact Cells* , 2003, The Journal of Biological Chemistry.

[37]  Xiaodong Wang,et al.  Cytochrome C-mediated apoptosis. , 2003, Annual review of biochemistry.

[38]  A. Halestrap,et al.  Sanglifehrin A Acts as a Potent Inhibitor of the Mitochondrial Permeability Transition and Reperfusion Injury of the Heart by Binding to Cyclophilin-D at a Different Site from Cyclosporin A* , 2002, The Journal of Biological Chemistry.

[39]  Michael V. Cohen,et al.  Mitochondrial K(ATP) channels: role in cardioprotection. , 2002, Cardiovascular research.

[40]  D. Yellon,et al.  Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? , 2002, Cardiovascular research.

[41]  S. Minucci,et al.  A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis , 2002, Oncogene.

[42]  J. Weiss,et al.  Protection of cardiac mitochondria by diazoxide and protein kinase C: Implications for ischemic preconditioning , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Lihua He,et al.  Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? , 2002, FEBS letters.

[44]  E. Marbán,et al.  Mitochondrial ATP-Sensitive Potassium Channels Attenuate Matrix Ca2+ Overload During Simulated Ischemia and Reperfusion: Possible Mechanism of Cardioprotection , 2001, Circulation research.

[45]  Sherry F. Grissom,et al.  The mitochondrial permeability transition initiates autophagy in rat hepatocytes , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[46]  C. Hoppel,et al.  Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure. , 2001, Journal of molecular and cellular cardiology.

[47]  F. Di Lisa,et al.  Pathophysiological relevance of mitochondria in NAD+ metabolism , 2001, FEBS letters.

[48]  P. Bernardi,et al.  A mitochondrial perspective on cell death. , 2001, Trends in biochemical sciences.

[49]  A. Kowaltowski,et al.  Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. , 2001, American journal of physiology. Heart and circulatory physiology.

[50]  Yigang Wang,et al.  Calcium preconditioning inhibits mitochondrial permeability transition and apoptosis. , 2001, American journal of physiology. Heart and circulatory physiology.

[51]  P. Bernardi,et al.  Opening of the Mitochondrial Permeability Transition Pore Causes Depletion of Mitochondrial and Cytosolic NAD+and Is a Causative Event in the Death of Myocytes in Postischemic Reperfusion of the Heart* , 2001, The Journal of Biological Chemistry.

[52]  L. Scorrano,et al.  Arachidonic Acid Causes Cell Death through the Mitochondrial Permeability Transition , 2000, The Journal of Biological Chemistry.

[53]  B. O’Rourke Myocardial K(ATP) channels in preconditioning. , 2000, Circulation research.

[54]  M. Duchen Mitochondria and calcium: from cell signalling to cell death , 2000, The Journal of physiology.

[55]  B. O’Rourke,et al.  Pathophysiological and protective roles of mitochondrial ion channels , 2000, The Journal of physiology.

[56]  Steven J. Sollott,et al.  Reactive Oxygen Species (Ros-Induced) Ros Release , 2000, The Journal of experimental medicine.

[57]  J. Downey,et al.  Opening of Mitochondrial KATP Channels Triggers the Preconditioned State by Generating Free Radicals , 2000, Circulation research.

[58]  V. Skulachev Mitochondria in the Programmed Death Phenomena; A Principle of Biology: “It Is Better to Die than to be Wrong” , 2000, IUBMB life.

[59]  T. Vanden Hoek,et al.  Preconditioning in cardiomyocytes protects by attenuating oxidant stress at reperfusion. , 2000, Circulation research.

[60]  Luca Scorrano,et al.  Mitochondria and cell death. Mechanistic aspects and methodological issues. , 1999, European journal of biochemistry.

[61]  A. Terzic,et al.  ATP‐sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria , 1999, The Journal of physiology.

[62]  L. Scorrano,et al.  Commitment to Apoptosis by GD3 Ganglioside Depends on Opening of the Mitochondrial Permeability Transition Pore* , 1999, The Journal of Biological Chemistry.

[63]  John J. Lemasters,et al.  Mitochondrial Dysfunction in the Pathogenesis of Necrotic and Apoptotic Cell Death , 1999, Journal of bioenergetics and biomembranes.

[64]  J. Downey,et al.  Signal Transduction in Ischemic Preconditioning: , 1999, Journal of cardiovascular electrophysiology.

[65]  G. Miotto,et al.  Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. , 1999, Biophysical journal.

[66]  P. Bernardi,et al.  Mitochondrial transport of cations: channels, exchangers, and permeability transition. , 1999, Physiological reviews.

[67]  D. Williams,et al.  Mitochondrial permeability transition and swelling can occur reversibly without inducing cell death in intact human cells. , 1999, Experimental cell research.

[68]  M. Crompton,et al.  Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. , 1998, European journal of biochemistry.

[69]  F. Ichas,et al.  A Ubiquinone-binding Site Regulates the Mitochondrial Permeability Transition Pore* , 1998, The Journal of Biological Chemistry.

[70]  S. Javadov,et al.  Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. , 1998, Biochimica et biophysica acta.

[71]  J. Mazat,et al.  From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. , 1998, Biochimica et biophysica acta.

[72]  F. Di Lisa,et al.  The role of mitochondria in the salvage and the injury of the ischemic myocardium. , 1998, Biochimica et biophysica acta.

[73]  T. Vanden Hoek,et al.  Reactive Oxygen Species Released from Mitochondria during Brief Hypoxia Induce Preconditioning in Cardiomyocytes* , 1998, The Journal of Biological Chemistry.

[74]  P. Bernardi,et al.  Mitochondrial function as a determinant of recovery or death in cell response to injury , 1998, Molecular and Cellular Biochemistry.

[75]  G. Kroemer,et al.  The Permeability Transition Pore Complex: A Target for Apoptosis Regulation by Caspases and Bcl-2–related Proteins , 1998, The Journal of experimental medicine.

[76]  T. Wallimann,et al.  Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore , 1998, FEBS letters.

[77]  L. Blatter,et al.  Imaging the permeability pore transition in single mitochondria. , 1998, Biophysical journal.

[78]  M. Smith,et al.  Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. , 1997, Circulation research.

[79]  L. Scorrano,et al.  Two modes of activation of the permeability transition pore: The role of mitochondrial cyclophilin , 1997, Molecular and Cellular Biochemistry.

[80]  J. Mazat,et al.  Mitochondria Are Excitable Organelles Capable of Generating and Conveying Electrical and Calcium Signals , 1997, Cell.

[81]  M. Klingenberg,et al.  Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. , 1996, Biochemistry.

[82]  B. Chernyak,et al.  The mitochondrial permeability transition pore is modulated by oxidative agents through both pyridine nucleotides and glutathione at two separate sites. , 1996, European journal of biochemistry.

[83]  B. Chernyak,et al.  Modulation of the Mitochondrial Permeability Transition Pore by Pyridine Nucleotides and Dithiol Oxidation at Two Separate Sites (*) , 1996, The Journal of Biological Chemistry.

[84]  P. Bernardi,et al.  Interactions of Cyclophilin with the Mitochondrial Inner Membrane and Regulation of the Permeability Transition Pore, a Cyclosporin A-sensitive Channel (*) , 1996, The Journal of Biological Chemistry.

[85]  James D. Lechleiter,et al.  Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes , 1995, Nature.

[86]  B. Chernyak,et al.  Selective inhibition of the mitochondrial permeability transition pore at the oxidation‐reduction sensitive dithiol by monobromobimane , 1995, FEBS letters.

[87]  B. Herman,et al.  Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. , 1995, The Biochemical journal.

[88]  A. Halestrap,et al.  Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. , 1995, The Biochemical journal.

[89]  S. Novgorodov,et al.  The Peptide Mastoparan Is a Potent Facilitator of the Mitochondrial Permeability Transition (*) , 1995, The Journal of Biological Chemistry.

[90]  Etelvino J. H. Bechara,et al.  Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria. , 1995, Free radical biology & medicine.

[91]  P. Bernardi,et al.  Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane , 1994, Journal of bioenergetics and biomembranes.

[92]  P. Bernardi,et al.  Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. , 1994, Biochimica et biophysica acta.

[93]  R. Chapman,et al.  Changes in mitochondrial function induced in isolated guinea‐pig ventricular myocytes by calcium overload. , 1994, The Journal of physiology.

[94]  A. Halestrap,et al.  Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. , 1993, Journal of molecular and cellular cardiology.

[95]  J. Farber,et al.  Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. , 1993, The Journal of biological chemistry.

[96]  B. Herman,et al.  Mitochondrial and glycolytic dysfunction in lethal injury to hepatocytes by t-butylhydroperoxide: protection by fructose, cyclosporin A and trifluoperazine. , 1993, The Journal of pharmacology and experimental therapeutics.

[97]  R. Starling,et al.  Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes. , 1992, The American journal of physiology.

[98]  A. Halestrap,et al.  Purification and N-terminal sequencing of peptidyl-prolyl cis-trans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. , 1992, The Biochemical journal.

[99]  P. Bernardi Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. , 1992, The Journal of biological chemistry.

[100]  M. Zoratti,et al.  Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. , 1992, The Journal of biological chemistry.

[101]  M. Crompton,et al.  Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. , 1991, Journal of molecular and cellular cardiology.

[102]  A. Halestrap,et al.  Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. , 1990, The Biochemical journal.

[103]  M. Crompton,et al.  A heart mitochondrial Ca2(+)-dependent pore of possible relevance to re-perfusion-induced injury. Evidence that ADP facilitates pore interconversion between the closed and open states. , 1990, The Biochemical journal.

[104]  M. Crompton,et al.  Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. , 1987, The Biochemical journal.

[105]  P. Corr,et al.  The Dependence of Electrophysiological Derangements on Accumulation of Endogenous Long‐Chain Acyl Camitine in Hypoxic Neonatal Rat Myocytes , 1986, Circulation research.

[106]  P. Corr,et al.  Amphipathic metabolites and membrane dysfunction in ischemic myocardium. , 1984, Circulation research.

[107]  G. Azzone,et al.  Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. , 1981, The Journal of biological chemistry.

[108]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. , 1979, Archives of biochemistry and biophysics.

[109]  R. Haworth,et al.  The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. , 1979, Archives of biochemistry and biophysics.

[110]  E. Olson,et al.  Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. , 2004, The Journal of clinical investigation.

[111]  P. Brecher The interaction of long-chain acyl CoA with membranes , 2004, Molecular and Cellular Biochemistry.

[112]  E. Murphy Inhibit GSK-3beta or there's heartbreak dead ahead. , 2004, The Journal of clinical investigation.

[113]  P. Bernardi,et al.  Mitochondria and reperfusion injury. The role of permeability transition. , 2003, Basic research in cardiology.

[114]  Luca Scorrano,et al.  A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. , 2002, Developmental cell.

[115]  L. Scorrano,et al.  Mechanistic aspects and methodological issues , 1999 .

[116]  A. Katz,et al.  Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. , 1981, Circulation research.