Exact and approximate Kohn-Sham potentials in ensemble density-functional theory

We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) from the ground and excited states of helium. The exchange-correlation (XC) potential is compared with the quasi-localdensity approximation and both single-determinant and symmetry-eigenstate ghost-corrected exact exchange approximations. Symmetry-eigenstate Hartree exchange recovers distinctive features of the exact XC potential and is used to calculate the correlation potential. Unlike the exact case, excitation energies calculated from these approximations depend on ensemble weight, and it is shown that only the symmetry-eigenstate method produces an ensemble derivative discontinuity. Differences in asymptotic and near-ground-state behavior of exact and approximate XC potentials are discussed in the context of producing accurate optical gaps.