Thermal post-buckling behaviour of laminated plates using a shear-flexible element based on coupled-displacement field

Post buckling behaviour of rectangular laminated plates subjected to thermal loads is investigated in this paper. For this purpose, a four-node, lock-free, rectangular composite plate finite element having six degrees of freedom per node viz three translations, two bending rotations about x- and y-axes and a twist is developed. The element is based on a bicubic representation of the transverse displacement field. The field descriptions for other variables are derived using equilibrium equations of strips along x- and y-axes of the plate. As a result field descriptions involve material properties apart from the usual geometric variables. 3×3 Guass Quadrature formula is employed to compute the elemental matrices. Though an exact integration rule has been employed, the element is free of shear locking even in the extreme thin plate regimes. The effect of boundary conditions, aspect ratio, number of layers and lay-up sequence on the post-buckling behavior is studied in detail. The numerical examples solved herein reveal the possibility of secondary bifurcations from the primary post-buckling path.

[1]  C. Chia,et al.  Geometrically Nonlinear Behavior of Composite Plates: A Review , 1988 .

[2]  J. N. Reddy,et al.  A penalty plate‐bending element for the analysis of laminated anisotropic composite plates , 1980 .

[3]  Buckling of Simply Supported Plates Under Arbitrary Symmetrical Temperature Distributions , 1958 .

[4]  J. Ramachandran,et al.  Thermal buckling of composite laminated plates , 1989 .

[5]  C. Y. Chia,et al.  Postbuckling Behavior of Unsymmetrically Layered Anisotropic Rectangular Plates , 1974 .

[6]  M. Stein,et al.  Postbuckling of orthotropic composite plates loaded in compression , 1982 .

[7]  Y. Stavsky,et al.  Elastic wave propagation in heterogeneous plates , 1966 .

[8]  L. Shiau,et al.  Application of the finite element method to postbuckling analysis of laminated plates , 1995 .

[9]  Large deformation of antisymmetric angle-ply laminates resulting from nonuniform temperature loadings , 1988 .

[10]  Postbuckling response of antisymmetric angle-ply laminates to uniform temperature loading , 1988 .

[11]  P. Biswas Thermal Buckling of Orthotropic Plates , 1976 .

[12]  Lien-Wen Chen,et al.  Thermal postbuckling behaviors of laminated composite plates with temperature-dependent properties , 1991 .

[13]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[14]  Lien-Wen Chen,et al.  Postbuckling behavior of a thick plate , 1983 .

[15]  David W. Jensen,et al.  Influence of mechanical couplings on the buckling and postbuckling of anisotropic plates , 1988 .

[16]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[17]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[18]  Gajbir Singh,et al.  A new lock-free, material finite element for flexure of moderately thick rectangular composite plates , 1998 .

[19]  BUCKLING OF PLATES DUE TO SELF-EQUILIBRATED THERMAL STRESSES , 1985 .

[20]  J. N. Reddy,et al.  Non-linear bending of thick rectangular, laminated composite plates , 1981 .

[21]  P. Raveendranath,et al.  Free vibration of arches using a curved beam element based on a coupled polynomial displacement field , 2000 .

[22]  E. Hinton,et al.  A study of quadrilateral plate bending elements with ‘reduced’ integration , 1978 .

[23]  P. Raveendranath,et al.  An accurate four-node shear flexible composite plate element , 2000 .

[24]  T. R. Tauchert THERMAL BUCKLING OF THICK ANTISYMMETRIC ANGLE-PLY LAMINATES , 1987 .

[25]  G. Venkateswara Rao,et al.  Buckling and post-buckling analysis of moderately thick laminated rectangular plates , 1996 .

[26]  Robert L. Spilker,et al.  The hybrid‐stress model for thin plates , 1980 .

[27]  Gangan Prathap,et al.  A field-consistent, four-noded, laminated anisotropic plate/shell element , 1987 .

[28]  W. M. Roberts,et al.  Thermal buckling of plates , 1952 .

[29]  D. L. Flaggs,et al.  A Fourier analysis of spurious mechanisms and locking in the finite element method , 1984 .

[30]  G. Z. Harris,et al.  The buckling and post-buckling behaviour of composite plates under biaxial loading , 1975 .

[31]  Gajbir Singh,et al.  A two‐noded locking–free shear flexible curved beam element , 1999 .

[32]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[33]  N. Iyengar,et al.  Thermal postbuckling behavior of laminated composite plates , 1994 .

[34]  W. H. Wittrick,et al.  The Large Deflection and Post-Buckling Behaviour of Some Laminated Plates , 1973 .

[35]  M. Stein,et al.  Postbuckling of long orthotropic plates in combined shear and compression , 1983 .

[36]  D. L. Flaggs,et al.  An operational procedure for the symbolic analysis of the finite element method , 1984 .

[37]  Psang Dain Lin,et al.  Thermal buckling behavior of thick composite laminated plates under nonuniform temperature distribution , 1991 .

[38]  Ray W. Clough,et al.  Improved numerical integration of thick shell finite elements , 1971 .

[39]  M. W. Hyer,et al.  Thermally-induced, geometrically nonlinear response of symmetrically laminated composite plates , 1992 .

[40]  James M. Whitney,et al.  Effect of Environment on the Elastic Response of Layered Composite Plates , 1971 .

[41]  Theodore H. H. Pian,et al.  Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .

[42]  Ahmed K. Noor,et al.  Mixed isoparametric finite element models of laminated composite shells , 1977 .

[43]  A. Leissa A Review of Laminated Composite Plate Buckling , 1987 .

[44]  M. Crisfield A quadratic mindlin element using shear constraints , 1984 .