The Soil Moisture Active Passive (SMAP) Mission

The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. SMAP will make global measurements of the soil moisture present at the Earth's land surface and will distinguish frozen from thawed land surfaces. Direct observations of soil moisture and freeze/thaw state from space will allow significantly improved estimates of water, energy, and carbon transfers between the land and the atmosphere. The accuracy of numerical models of the atmosphere used in weather prediction and climate projections are critically dependent on the correct characterization of these transfers. Soil moisture measurements are also directly applicable to flood assessment and drought monitoring. SMAP observations can help monitor these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing will also reduce a major uncertainty in quantifying the global carbon balance by helping to resolve an apparent missing carbon sink on land over the boreal latitudes. The SMAP mission concept will utilize L-band radar and radiometer instruments sharing a rotating 6-m mesh reflector antenna to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these observations with advanced modeling and data assimilation to provide deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP is scheduled for launch in the 2014-2015 time frame.

[1]  Moti Segal,et al.  Influences of Model Parameterization Schemes on the Response of Rainfall to Soil Moisture in the Central United States , 1996 .

[2]  Richard K. Moore,et al.  Radar remote sensing and surface scattering and emission theory , 1986 .

[3]  Sujay V. Kumar,et al.  Land information system: An interoperable framework for high resolution land surface modeling , 2006, Environ. Model. Softw..

[4]  Fei Chen,et al.  Impact of Land-Surface Moisture Variability on Local Shallow Convective Cumulus and Precipitation in Large-Scale Models , 1994 .

[5]  Fanglin Yang,et al.  Potential Predictability of U.S. Summer Climate with "Perfect" Soil Moisture , 2004 .

[6]  Pedro Viterbo,et al.  Impact of the ECMWF reanalysis soil water on forecasts of the July 1993 Mississippi flood , 1999 .

[7]  Jeffrey Piepmeier,et al.  Mitigation of Terrestrial Radar Interference in L-Band Spaceborne Microwave Radiometers , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[8]  John S. Kimball,et al.  Radar remote sensing proposed for monitoring freeze‐thaw transitions in boreal regions , 1999 .

[9]  Edward V. Browell,et al.  A Case Study on the Effects of Heterogeneous Soil Moisture on Mesoscale Boundary-Layer Structure in the Southern Great Plains, U.S.A. Part I: Simple Prognostic Model , 2006 .

[10]  A. Fung,et al.  Microwave Remote Sensing Active and Passive-Volume III: From Theory to Applications , 1986 .

[11]  Albin J. Gasiewski,et al.  Interference mitigation in passive microwave radiometry , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[12]  S. Nghiem,et al.  Seasonal evolution and interannual variability of the local solar energy absorbed by the Arctic sea ice–ocean system , 2007 .

[13]  Kyle McDonald,et al.  Evaluating the type and state of Alaska taiga forests with imaging radar for use in ecosystem models , 1994, IEEE Trans. Geosci. Remote. Sens..

[14]  John S. Kimball,et al.  Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests. , 2004 .

[15]  Thomas J. Jackson,et al.  High-resolution change estimation of soil moisture using L-band radiometer and Radar observations made during the SMEX02 experiments , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[16]  J. Shaman,et al.  Achieving Operational Hydrologic Monitoring of Mosquitoborne Disease , 2005, Emerging infectious diseases.

[17]  Jiancheng Shi,et al.  Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data , 1997, IEEE Trans. Geosci. Remote. Sens..

[18]  S. Frolking,et al.  Radar remote sensing of the spring thaw transition across a boreal landscape , 2004 .

[19]  Joel T. Johnson,et al.  Airborne radio-frequency interference studies at C-band using a digital receiver , 2006, IEEE Trans. Geosci. Remote. Sens..

[20]  H. Volger,et al.  WMO – World Meteorological Organization , 2000, A Concise Encyclopedia of the United Nations.

[21]  Jiancheng Shi,et al.  An observing system simulation experiment for hydros radiometer-only soil moisture products , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Jean Palutikof,et al.  Soil moisture and predicted spells of extreme temperatures in Britain , 2005 .

[23]  T. Jackson,et al.  L‐band microwave observations over land surface using a two‐dimensional synthetic aperture radiometer , 2006 .

[24]  T. J. Jackson,et al.  Skylab L-band microwave radiometer observations of soil moisture revisited , 2004 .

[25]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[26]  Venkat Lakshmi,et al.  Retrieval of soil moisture from passive and active L/S band sensor (PALS) observations during the Soil Moisture Experiment in 2002 (SMEX02) , 2004 .

[27]  Yoshio Kurihara,et al.  Improvements in Tropical Cyclone Track and Intensity Forecasts Using the GFDL Initialization System , 1993 .

[28]  Son V. Nghiem,et al.  Depletion of perennial sea ice in the East Arctic Ocean , 2006 .

[29]  Guido D. Salvucci,et al.  Estimating the moisture dependence of root zone water loss using conditionally averaged precipitation , 2001 .

[30]  Roger A. Pielke,et al.  A Modeling Study of the Dryline , 1995 .

[31]  Pascale C. Dubois,et al.  Measuring soil moisture with imaging radars , 1995, IEEE Trans. Geosci. Remote. Sens..

[32]  Ross N Hoffman Controlling hurricanes. , 2004, Scientific American.

[33]  R. Reichle Data assimilation methods in the Earth sciences , 2008 .

[34]  J. Bolten,et al.  Estimating precipitation errors using spaceborne surface soil moisture retrievals , 2007 .

[35]  Fei Chen,et al.  Effect of Land–Atmosphere Interactions on the IHOP 24–25 May 2002 Convection Case , 2006 .

[36]  Thomas Schmugge,et al.  Passive Microwave Soil Moisture Research , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[37]  T. Schmugge,et al.  Remote sensing of soil moisture with microwave radiometers , 1974 .

[38]  J. Patz,et al.  Predicting key malaria transmission factors, biting and entomological inoculation rates, using modelled soil moisture in Kenya , 1998, Tropical medicine & international health : TM & IH.

[39]  Thomas J. Schmugge,et al.  Remote Sensing of Soil Moisture with Microwave Radiometers , 1983 .

[40]  Fei Chen,et al.  Sensitivity of Orographic Moist Convection to Landscape Variability: A Study of the Buffalo Creek, Colorado, Flash Flood Case of 1996 , 2001 .

[41]  Yann Kerr,et al.  The hydrosphere State (hydros) Satellite mission: an Earth system pathfinder for global mapping of soil moisture and land freeze/thaw , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Robert Atlas,et al.  The Effect of SST and Soil Moisture Anomalies on GLA Model Simulations of the 1988 U.S. Summer Drought. , 1993 .

[43]  Yann Kerr,et al.  Soil moisture retrieval from space: the Soil Moisture and Ocean Salinity (SMOS) mission , 2001, IEEE Trans. Geosci. Remote. Sens..

[44]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[45]  S. Dickinson,et al.  A Study of Near-Surface Winds in Marine Cyclones Using Multiple Satellite Sensors , 1996 .

[46]  Thomas J. Jackson,et al.  Combined Passive and Active Microwave Observations of Soil Moisture During CLASIC , 2009, IEEE Geoscience and Remote Sensing Letters.

[47]  W. Marsden I and J , 2012 .

[48]  Yann Kerr,et al.  Inversion of surface parameters from passive microwave measurements over a soybean field , 1993 .

[49]  Adriano Camps,et al.  A Change Detection Algorithm for Retrieving High-Resolution Soil Moisture From SMAP Radar and Radiometer Observations , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[50]  M. Blackburn,et al.  Factors contributing to the summer 2003 European heatwave , 2004 .

[51]  F. R. Schiebe,et al.  Large area mapping of soil moisture using the ESTAR passive microwave radiometer , 1995 .

[52]  Laurie Geller,et al.  Under the Weather: Climate, Ecosystems, and Infectious Disease , 2001 .

[53]  Thomas J. Jackson,et al.  Soil moisture and rainfall estimation over a semiarid environment with the ESTAR microwave radiometer , 1993, IEEE Trans. Geosci. Remote. Sens..

[54]  E. Rignot,et al.  Monitoring freeze—thaw cycles along North—South Alaskan transects using ERS-1 SAR , 1994 .

[55]  W. Timothy Liu,et al.  Impact of Scatterometer Winds on Hydrologic Forcing and Convective Heating through Surface Divergence , 1997 .

[56]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[57]  Moti Segal,et al.  Sensitivity of forecast rainfall in a Texas convective system to soil moisture and convective parameterization , 2000 .

[58]  R. Koster,et al.  Comparison and assimilation of global soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR‐E) and the Scanning Multichannel Microwave Radiometer (SMMR) , 2007 .

[59]  T. Schmugge,et al.  Radiometric measurements over bare and vegetated fields at 1.4 GHz and 5 GHz frequencies. [Beltsville Agricultural Research Center, Maryland] , 1981 .

[60]  E. Njoku,et al.  Passive microwave remote sensing of soil moisture , 1996 .

[61]  Venkat Lakshmi,et al.  A simple algorithm for spatial disaggregation of radiometer derived soil moisture using higher resolution radar observations , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[62]  Sidharth Misra,et al.  RFI detection and mitigation for microwave radiometry with an agile digital detector , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[63]  Thomas J. Jackson,et al.  Skylab L band microwave radiometer observations of soil moisture revisited , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[64]  T. Delworth,et al.  Changes in Heat Index Associated with CO2-Induced Global Warming , 1999 .

[65]  K. Kondratyev,et al.  PASSIVE MICROWAVE REMOTE SENSING OF SOIL MOISTURE , 1977 .

[66]  Yann Kerr,et al.  SMOS: The Challenging Sea Surface Salinity Measurement From Space , 2010, Proceedings of the IEEE.

[67]  Wade T. Crow,et al.  Multiple spaceborne water cycle observations would aid modeling , 2006 .

[68]  Paul R. Houser,et al.  Requirements of a global near-surface soil moisture satellite mission: accuracy, repeat time, and spatial resolution , 2004 .

[69]  P. Strevens Iii , 1985 .

[70]  John S. Kimball,et al.  Application of the NASA Scatterometer (NSCAT) for Determining the Daily Frozen and Nonfrozen Landscape of Alaska , 2001 .

[71]  V. Lakshmi,et al.  Characterizing subpixel variability of low resolution radiometer derived soil moisture using high resolution radar data , 2008 .

[72]  Richard K. Moore,et al.  Microwave Remote Sensing , 1999 .

[73]  Thomas J. Jackson,et al.  Observations of soil moisture using a passive and active low-frequency microwave airborne sensor during SGP99 , 2002, IEEE Trans. Geosci. Remote. Sens..

[74]  Thomas J. Jackson,et al.  Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains Hydrology Experiment , 1999, IEEE Trans. Geosci. Remote. Sens..

[75]  Wade T. Crow,et al.  The added value of spaceborne passive microwave soil moisture retrievals for forecasting rainfall‐runoff partitioning , 2005 .

[76]  S. Yueh,et al.  QuikSCAT and TRMM Reveal the Interplay Between Dynamic and Hydrologic Parameters in Hurricane Floyd , 2000 .

[77]  Eric Rignot,et al.  Winter and Spring Thaw as Observed with Imaging Radar at BOREAS , 1997 .

[78]  John S. Kimball,et al.  Using the space‐borne NASA scatterometer (NSCAT) to determine the frozen and thawed seasons , 1999 .

[79]  D. Lawrence,et al.  Regions of Strong Coupling Between Soil Moisture and Precipitation , 2004, Science.

[80]  Yann Kerr,et al.  A Simple Model of the Bare Soil Microwave Emission at L-Band , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[81]  F. Ulaby,et al.  Radar mapping of surface soil moisture , 1996 .

[82]  H. Douville,et al.  Relevance of soil moisture for seasonal climate predictions: a preliminary study , 2000 .

[83]  C. Swift,et al.  Microwave remote sensing , 1980, IEEE Antennas and Propagation Society Newsletter.

[84]  Thomas J. Jackson,et al.  Passive microwave remote sensing of soil moisture: results from HAPEX, FIFE and MONSOON 90 , 1992 .

[85]  Thomas J. Jackson,et al.  Evaporation from Nonvegetated Surfaces: Surface Aridity Methods and Passive Microwave Remote Sensing , 1999 .

[86]  Yann Kerr,et al.  The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle , 2010, Proceedings of the IEEE.

[87]  J. D. Tarpley,et al.  The multi‐institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system , 2004 .