Wnt signaling and polarity in freshwater sponges

[1]  R. Premont,et al.  Niclosamide: Beyond an antihelminthic drug , 2017, Cellular Signalling.

[2]  S. Leys,et al.  Phylogenetic analyses and fasta files of Porifera Wnts , 2017 .

[3]  A. Le Bivic,et al.  Animal multicellularity and polarity without Wnt signaling , 2017, Scientific Reports.

[4]  S. Leys Ephydatia muelleri Trinity transcriptome , 2017 .

[5]  S. Leys Eunapius fragilis Trinity transcriptome , 2017 .

[6]  S. Nichols,et al.  β-catenin has both conserved and novel functions in the sponge Ephydatia muelleri , 2017, bioRxiv.

[7]  J. Prokop,et al.  Methylation specific targeting of a chromatin remodeling complex from sponges to humans , 2017, Scientific Reports.

[8]  R. Nusse,et al.  Generating Cellular Diversity and Spatial Form: Wnt Signaling and the Evolution of Multicellular Animals. , 2016, Developmental cell.

[9]  M. Adamski,et al.  Surprisingly rich repertoire of Wnt genes in the demosponge Halisarca dujardini , 2016, BMC Evolutionary Biology.

[10]  A. Hill,et al.  Insights into Frizzled evolution and new perspectives , 2015, Evolution & development.

[11]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[12]  D. Ferrier,et al.  Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes , 2014, Nature.

[13]  Pamela J Windsor Evolution of the sponge body plan: Wnt and the development of polarity in freshwater sponges , 2014 .

[14]  Maja Adamska,et al.  Developmental gene expression provides clues to relationships between sponge and eumetazoan body plans , 2014, Nature Communications.

[15]  S. Leys Aphrocallistes vastus Trinity transcriptome , 2014 .

[16]  S. Leys,et al.  The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. , 2014, Molecular biology and evolution.

[17]  S. Leys,et al.  Evolutionary origins of sensation in metazoans: functional evidence for a new sensory organ in sponges , 2014, BMC Evolutionary Biology.

[18]  H. le Guyader,et al.  Evidence for Involvement of Wnt Signalling in Body Polarities, Cell Proliferation, and the Neuro-Sensory System in an Adult Ctenophore , 2013, PloS one.

[19]  D. Richter,et al.  The genomic and cellular foundations of animal origins. , 2013, Annual review of genetics.

[20]  A. Hill,et al.  The evolution and function of the Pax/Six regulatory network in sponges , 2013, Evolution & development.

[21]  Minh Anh Nguyen,et al.  Ultrafast Approximation for Phylogenetic Bootstrap , 2013, Molecular biology and evolution.

[22]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[23]  B. Haas,et al.  Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta , 2013, Genome Biology.

[24]  T. Holstein,et al.  The evolution of the Wnt pathway. , 2012, Cold Spring Harbor perspectives in biology.

[25]  S. Forêt,et al.  Searching for Eve: Basal metazoans and the evolution of multicellular complexity , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[26]  S. Leys,et al.  The physiology and molecular biology of sponge tissues. , 2012, Advances in marine biology.

[27]  Karri M. Haen,et al.  RNA interference in marine and freshwater sponges: actin knockdown in Tethya wilhelma and Ephydatia muelleri by ingested dsRNA expressing bacteria , 2011, BMC biotechnology.

[28]  B Franz Lang,et al.  Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. , 2011, Molecular biology and evolution.

[29]  J. Mullikin,et al.  Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi , 2010, EvoDevo.

[30]  G. Richards,et al.  Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica , 2010, Evolution & development.

[31]  S. Leys,et al.  Wnt signaling and induction in the sponge aquiferous system: evidence for an ancient origin of the organizer , 2010, Evolution & development.

[32]  Wei Chen,et al.  Development of small molecules targeting the Wnt pathway for the treatment of colon cancer: a high-throughput screening approach. , 2010, American journal of physiology. Gastrointestinal and liver physiology.

[33]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[34]  Ning Ma,et al.  BLAST+: architecture and applications , 2009, BMC Bioinformatics.

[35]  X. Ren,et al.  The anti-helminthic niclosamide inhibits Wnt/Frizzled1 signaling. , 2009, Biochemistry.

[36]  Romain Derelle,et al.  WNT/β-Catenin Signalling and Epithelial Patterning in the Homoscleromorph Sponge Oscarella , 2009, PloS one.

[37]  Toni Gabaldón,et al.  trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses , 2009, Bioinform..

[38]  Bert Hobmayer,et al.  Wnt/β-Catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra , 2009, Proceedings of the National Academy of Sciences.

[39]  B. Degnan,et al.  Analysis of cell movement in amphimedon embryos by injection of fluorescent tracers. , 2008, CSH protocols.

[40]  K. Agata,et al.  Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: Differential mRNA expression of spicule‐type‐specific silicatein genes in Ephydatia fluviatilis , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[41]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[42]  B. Degnan,et al.  Genesis and expansion of metazoan transcription factor gene classes. , 2008, Molecular biology and evolution.

[43]  Nicholas H. Putnam,et al.  The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans , 2008, Nature.

[44]  A. Harwood Dictyostelium development: a prototypic Wnt pathway? , 2008, Methods in molecular biology.

[45]  S. Leys,et al.  Coordinated contractions effectively expel water from the aquiferous system of a freshwater sponge , 2007, Journal of Experimental Biology.

[46]  Grigory Genikhovich,et al.  The blastoporal organiser of a sea anemone , 2007, Current Biology.

[47]  B. Degnan,et al.  Wnt and TGF-β Expression in the Sponge Amphimedon queenslandica and the Origin of Metazoan Embryonic Patterning , 2007, PloS one.

[48]  C. Niehrs,et al.  An ancient Wnt-Dickkopf antagonism in Hydra , 2006, Development.

[49]  Chul-hak Yang,et al.  Quercetin, a potent inhibitor against beta-catenin/Tcf signaling in SW480 colon cancer cells. , 2005, Biochemical and biophysical research communications.

[50]  M. Martindale,et al.  Unexpected complexity of the Wnt gene family in a sea anemone , 2005, Nature.

[51]  H. Daniel,et al.  Protein expression profiling identifies molecular targets of quercetin as a major dietary flavonoid in human colon cancer cells , 2004, Proteomics.

[52]  M. Martindale,et al.  An ancient role for nuclear β-catenin in the evolution of axial polarity and germ layer segregation , 2003, Nature.

[53]  B. Degnan,et al.  Cytological Basis of Photoresponsive Behavior in a Sponge Larva , 2001, The Biological Bulletin.

[54]  K. Peterson,et al.  Clypeatula cooperensis gen. n., sp. n., a new freshwater sponge (Porifera, Spongillidae) from the Rocky Mountains of Montana, USA , 2000, Zoologica scripta.

[55]  T. Sakai,et al.  Effects of quercetin and/or restraint stress on formation of aberrant crypt foci induced by azoxymethane in rat colons. , 1997, Oncology.

[56]  M. Hassel,et al.  Pattern formation in Hydra vulgaris is controlled by lithium-sensitive processes. , 1993, Developmental biology.

[57]  O. J. Dunn Multiple Comparisons Using Rank Sums , 1964 .

[58]  M. Spiegel THE REAGGREGATION OF DISSOCIATED SPONGE CELLS , 1955, Annals of the New York Academy of Sciences.