Septal Cholinergic Neuromodulation Tunes the Astrocyte-Dependent Gating of Hippocampal NMDA Receptors to Wakefulness

[1]  M. Zugaro,et al.  Hippocampo-cortical coupling mediates memory consolidation during sleep , 2016, Nature Neuroscience.

[2]  Nina Vardjan,et al.  Loose excitation–secretion coupling in astrocytes , 2016, Glia.

[3]  R. McCarley,et al.  Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study , 2016, The Journal of Neuroscience.

[4]  Frank W. Pfrieger,et al.  Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally Controlled by Astrocytes , 2015, Neuron.

[5]  M. Kassiou,et al.  The Therapeutic Potential of α7 Nicotinic Acetylcholine Receptor (α7 nAChR) Agonists for the Treatment of the Cognitive Deficits Associated with Schizophrenia , 2015, CNS Drugs.

[6]  Takahiro Takano,et al.  Neuronal Transgene Expression in Dominant-Negative SNARE Mice , 2014, The Journal of Neuroscience.

[7]  H. Hirase,et al.  Volume transmission signalling via astrocytes , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[8]  Â. R. Tomé,et al.  Nicotinic α7 receptor activation selectively potentiates the function of NMDA receptors in glutamatergic terminals of the nucleus accumbens , 2014, Front. Cell. Neurosci..

[9]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[10]  Z. Gu,et al.  Research tool: validation of floxed α7 nicotinic acetylcholine receptor conditional knockout mice using in vitro and in vivo approaches , 2014, The Journal of physiology.

[11]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[12]  Jin U. Kang,et al.  Norepinephrine Controls Astroglial Responsiveness to Local Circuit Activity , 2014, Neuron.

[13]  D. Javitt Current and Emergent Treatments for Symptoms and Neurocognitive Impairment in Schizophrenia , 2014, Current Treatment Options in Psychiatry.

[14]  D. Coulter,et al.  Cortical synaptic NMDA receptor deficits in α7 nicotinic acetylcholine receptor gene deletion models: Implications for neuropsychiatric diseases , 2014, Neurobiology of Disease.

[15]  J. Coyle,et al.  d-Serine and Serine Racemase are Localized to Neurons in the Adult Mouse and Human Forebrain , 2014, Cellular and Molecular Neurobiology.

[16]  R. Freedman α7-nicotinic acetylcholine receptor agonists for cognitive enhancement in schizophrenia. , 2014, Annual review of medicine.

[17]  Maiken Nedergaard,et al.  α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. , 2013, Cell calcium.

[18]  M. Bernier,et al.  Nicotinic acetylcholine receptor antagonists alter the function and expression of serine racemase in PC-12 and 1321N1 cells. , 2013, Cellular signalling.

[19]  I. Radzishevsky,et al.  The serine shuttle between glia and neurons: implications for neurotransmission and neurodegeneration. , 2013, Biochemical Society transactions.

[20]  Michael J. Goard,et al.  Fast Modulation of Visual Perception by Basal Forebrain Cholinergic Neurons , 2013, Nature Neuroscience.

[21]  A. Arnsten,et al.  Nicotinic α7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex , 2013, Proceedings of the National Academy of Sciences.

[22]  Robert T. R. Huckstepp,et al.  TRPA1 Channels Are Regulators of Astrocyte Basal Calcium Levels and Long-Term Potentiation via Constitutive d-Serine Release , 2013, The Journal of Neuroscience.

[23]  Qiang Zhou,et al.  NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease , 2013, Nature Reviews Neuroscience.

[24]  Jack R. Mellor,et al.  Cholinergic modulation of hippocampal network function , 2013, Front. Synaptic Neurosci..

[25]  T. Abel,et al.  Daily acclimation handling does not affect hippocampal long-term potentiation or cause chronic sleep deprivation in mice. , 2013, Sleep.

[26]  J. Sweedler,et al.  Storage and Uptake of d-Serine into Astrocytic Synaptic-Like Vesicles Specify Gliotransmission , 2013, The Journal of Neuroscience.

[27]  Mriganka Sur,et al.  Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes , 2012, Proceedings of the National Academy of Sciences.

[28]  S. Oliet,et al.  Synaptic and Extrasynaptic NMDA Receptors Are Gated by Different Endogenous Coagonists , 2012, Cell.

[29]  M Larsson,et al.  Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. , 2012, Cerebral cortex.

[30]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[31]  S. Snyder,et al.  Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion , 2012, Molecular Psychiatry.

[32]  N. Dale,et al.  Wakefulness Affects Synaptic and Network Activity by Increasing Extracellular Astrocyte-Derived Adenosine , 2012, The Journal of Neuroscience.

[33]  J. Roder,et al.  Contributions of the d-serine pathway to schizophrenia , 2012, Neuropharmacology.

[34]  J. Yakel,et al.  Functional α7 Nicotinic ACh Receptors on Astrocytes in Rat Hippocampal CA1 Slices , 2012, Journal of Molecular Neuroscience.

[35]  D. Bertrand,et al.  EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors , 2012, Neuropharmacology.

[36]  Eduardo D. Martín,et al.  Astrocytes Mediate In Vivo Cholinergic-Induced Synaptic Plasticity , 2012, PLoS biology.

[37]  V. Pickel,et al.  Acetylcholine α7 nicotinic and dopamine D2 receptors are targeted to many of the same postsynaptic dendrites and astrocytes in the rodent prefrontal cortex , 2011, Synapse.

[38]  Hajime Hirase,et al.  Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo , 2011, Neuroscience Research.

[39]  G. Feng,et al.  Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function , 2011, Nature Methods.

[40]  Daniel C. Javitt,et al.  High dose D-serine in the treatment of schizophrenia , 2010, Schizophrenia Research.

[41]  S. Oliet,et al.  Long term potentiation depends on release of D-serine from astrocytes , 2009, Nature.

[42]  E. Schenberg,et al.  Effects of pre or posttraining dorsal hippocampus D‐AP5 injection on fear conditioning to tone, background, and foreground context , 2008, Hippocampus.

[43]  Y. Urade,et al.  Algorithm for sleep scoring in experimental animals based on fast Fourier transform power spectrum analysis of the electroencephalogram , 2008 .

[44]  J. W. Rudy,et al.  The role of dorsal hippocampus and basolateral amygdala NMDA receptors in the acquisition and retrieval of context and contextual fear memories. , 2007, Behavioral neuroscience.

[45]  R. Panizzutti,et al.  A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia , 2007, Schizophrenia Research.

[46]  P. Paoletti,et al.  NMDA receptor subunits: function and pharmacology. , 2007, Current opinion in pharmacology.

[47]  J. Pedraza-Chaverri,et al.  Evaluation of oxidative stress in D-serine induced nephrotoxicity. , 2007, Toxicology.

[48]  S. Oliet,et al.  Glia-Derived d-Serine Controls NMDA Receptor Activity and Synaptic Memory , 2006, Cell.

[49]  Cathryn L. Kubera,et al.  Astrocytic Purinergic Signaling Coordinates Synaptic Networks , 2005, Science.

[50]  Sonja Hatz,et al.  Listening to the brain: microelectrode biosensors for neurochemicals. , 2005, Trends in biotechnology.

[51]  A. Alonso,et al.  Cholinergic Basal Forebrain Neurons Burst with Theta during Waking and Paradoxical Sleep , 2005, The Journal of Neuroscience.

[52]  T. Toyo’oka,et al.  Simultaneous determination of D- and L-serine in rat brain microdialysis sample using a column-switching HPLC with fluorimetric detection. , 2004, Biomedical chromatography : BMC.

[53]  A. Messing,et al.  Expression Specificity of GFAP Transgenes , 2004, Neurochemical Research.

[54]  R. Weiss,et al.  Mouse strain‐specific nicotinic acetylcholine receptor expression by inhibitory interneurons and astrocytes in the dorsal hippocampus , 2004, The Journal of comparative neurology.

[55]  Kenji Hashimoto,et al.  Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. , 2003, Archives of general psychiatry.

[56]  S. Vijayaraghavan,et al.  Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  M. Bear,et al.  Modulation of Long-Term Synaptic Depression in Visual Cortex by Acetylcholine and Norepinephrine , 1999, The Journal of Neuroscience.

[58]  J. Clements Transmitter timecourse in the synaptic cleft: its role in central synaptic function , 1996, Trends in Neurosciences.

[59]  Francesco Marrosu,et al.  Microdialysis measurement of cortical and hippocampal acetylcholine release during sleep-wake cycle in freely moving cats , 1995, Brain Research.

[60]  H. Markram,et al.  Acetylcholine potentiates responses to N-methyl-d-aspartate in the rat hippocampus , 1990, Neuroscience Letters.

[61]  R. Dingledine,et al.  Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. , 1988, Science.

[62]  P. Ascher,et al.  Glycine potentiates the NMDA response in cultured mouse brain neurons , 1987, Nature.

[63]  F. Bloom,et al.  Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  Bita Moghaddam,et al.  From Revolution to Evolution: The Glutamate Hypothesis of Schizophrenia and its Implication for Treatment , 2012, Neuropsychopharmacology.