A Parametrically forced nonlinear System with Reversible Equilibria

A nonlinear Duffing-type dynamical system, in which the stability of equilibria is modulated in a time-dependent manner, is investigated both experimentally and numerically. This is a low-order dynamical system with some interesting available choices in the coordinate system. The system is found to exhibit a variety of interesting nonlinear behavior including ultrasubharmonic resonance. Frequency content is used to characterize periodic and chaotic behavior and their relation to the parameter space.

[1]  Kazuyuki Yagasaki HIGHER-ORDER AVERAGING AND ULTRA-SUBHARMONICS IN FORCED OSCILLATORS , 1998 .

[2]  J. Tomas Einfluß der höheren harmonischen Komponenten der Erregungskraft auf die stationären Schwingungen eines nichtlinearen Systems , 1970 .

[3]  Earl Logan,et al.  Handbook of Turbomachinery , 1994 .

[4]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[5]  Akio Ishida,et al.  Stability of equilibrium in rotating magnetic field current drive for sustaining field-reversed configuration , 2002 .

[6]  Thomas P. Witelski,et al.  Perturbed reversible systems , 1995 .

[7]  Lawrence N. Virgin,et al.  A Note on the Response Spectrum Map , 2003, Int. J. Bifurc. Chaos.

[8]  Lawrence N. Virgin,et al.  Introduction to Experimental Nonlinear Dynamics , 2000 .

[9]  C. B. Allendoerfer,et al.  A Handbook On Curves And Their Properties , 1948 .

[10]  W. Xie Dynamic stability of structures , 2006 .

[11]  Earl H. Dowell,et al.  Experimental mimicry of Duffing's equation , 1992 .

[12]  Herman Erlichson Johann Bernoulli's brachistochrone solution using Fermat's principle of least time , 1999 .

[13]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[14]  J. Tomas Ultrasubharmonic resonance in a Duffing system , 1971 .

[15]  Xianfan Xu,et al.  Non-Equilibrium Phase Change in Metal Induced by Nanosecond Pulsed Laser Irradiation , 2002 .

[16]  Liu Zeng-rong,et al.  Some phenomena for weak spring Duffing equation in subharmonic and ultrasubharmonic region , 1987 .

[17]  Lawrence N. Virgin,et al.  Nonlinear dynamics of a ball rolling on a surface , 2010 .