Low genetic diversity and shallow population structure in the broom hare, Lepus castroviejoi (Lagomorpha: Leporidae)

The broom hare (Lepus castroviejoi) is a threatened Iberian endemic, for which there is limited knowledge. We use genetic non-invasive sampling (gNIS; N = 185 faeces samples) and specimens from hunting and roadkills (N = 22) in conjunction with a 15-microsatellite panel and a 541-bp fragment of cytochrome-b to assess the genetic diversity, population structure and evolutionary history of this species. Populations from the other four European hare species were also analysed to accurately compare the genetic diversity patterns and infer admixture. Species identification from gNIS was inferred using small fragments of cytochrome-b and transferrin genes and individual identification was obtained using microsatellites. The broom hare population showed the lowest level of nuclear DNA diversity of all analysed hare species (N = 76; Na = 2.53, He = 0.186 and Fis = 0.341) and very low mitochondrial DNA diversity (N = 64; Hd = 0.743 and π = 0.01543). Only the Italian hare (L. corsicanus) showed a similar pattern of low genetic diversity. No hybridization with the neighbouring hare species was detected. However, two mitochondrial DNA lineages, corresponding to two ancient events of introgression of mountain hare (L. timidus) origin, were characterized. There was evidence for shallow spatial population differentiation of the broom hare. The described reduced genetic diversity, associated with a narrow distribution range and recent population declines, represents a risk of population extinction, and highlights the need for conservation measures of this endemic threatened hare species.

[1]  Jinliang Wang MLNe: Simulating and Estimating Effective Size and Migration Rate from Temporal Changes in Allele Frequencies. , 2022, Journal of Heredity.

[2]  M. Head Review of the Early–Middle Pleistocene boundary and Marine Isotope Stage 19 , 2021, Progress in Earth and Planetary Science.

[3]  P. Hedrick,et al.  The crucial role of genome-wide genetic variation in conservation , 2021, Proceedings of the National Academy of Sciences.

[4]  P. De la Rúa,et al.  Wide genetic diversity in Old World honey bees threaten by introgression , 2020 .

[5]  J. C. Teixeira,et al.  The inflated significance of neutral genetic diversity in conservation genetics , 2020, Proceedings of the National Academy of Sciences.

[6]  P. Boursot,et al.  The Legacy of Recurrent Introgression during the Radiation of Hares , 2020, bioRxiv.

[7]  K. Hackländer,et al.  Introgression drives repeated evolution of winter coat color polymorphism in hares , 2019, Proceedings of the National Academy of Sciences.

[8]  Hitoshi Suzuki,et al.  Contrasting phylogeographic histories between the continent and islands of East Asia: Massive mitochondrial introgression and long-term isolation of hares (Lagomorpha: Lepus). , 2019, Molecular phylogenetics and evolution.

[9]  A. Hendry,et al.  Estimated six per cent loss of genetic variation in wild populations since the industrial revolution , 2019, Evolutionary applications.

[10]  P. Alves,et al.  Red deer in Iberia: Molecular ecological studies in a southern refugium and inferences on European postglacial colonization history , 2019, PloS one.

[11]  Sebastián Duchêne,et al.  BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis , 2018, bioRxiv.

[12]  P. Boursot,et al.  The genomic impact of historical hybridization with massive mitochondrial DNA introgression , 2018, Genome Biology.

[13]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[14]  M. Suchard,et al.  Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.

[15]  Juan C. Sánchez-DelBarrio,et al.  DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. , 2017, Molecular biology and evolution.

[16]  Kazutaka Katoh,et al.  MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization , 2017, Briefings Bioinform..

[17]  R. Bouckaert,et al.  Model Selection and Parameter Inference in Phylogenetics Using Nested Sampling , 2017, Systematic biology.

[18]  K. Bollmann,et al.  Non-invasive genetic population density estimation of mountain hares (Lepus timidus) in the Alps: systematic or opportunistic sampling? , 2016, European Journal of Wildlife Research.

[19]  E. González,et al.  Genetic and demographic recovery of an isolated population of brown bear Ursus arctos L., 1758 , 2016, PeerJ.

[20]  Arndt von Haeseler,et al.  W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis , 2016, Nucleic Acids Res..

[21]  M. Jakobsson,et al.  Clumpak: a program for identifying clustering modes and packaging population structure inferences across K , 2015, Molecular ecology resources.

[22]  David Bryant,et al.  popart: full‐feature software for haplotype network construction , 2015 .

[23]  P. Alves,et al.  Effect of microsatellite selection on individual and population genetic inferences: an empirical study using cross‐specific and species‐specific amplifications , 2015, Molecular ecology resources.

[24]  E. Randi,et al.  Genetic diversity and no evidences of recent hybridization in the endemic Italian hare (Lepus corsicanus) , 2015, Conservation Genetics.

[25]  K. Uchiyama,et al.  Evidence for cryptic northern refugia in the last glacial period in Cryptomeria japonica. , 2014, Annals of botany.

[26]  R. Real,et al.  Evidence for niche similarities in the allopatric sister species Lepus castroviejoi and Lepus corsicanus , 2014 .

[27]  P. Campos,et al.  Colonization history of Mallorca Island by the European rabbit, Oryctolagus cuniculus, and the Iberian hare, Lepus granatensis (Lagomorpha: Leporidae) , 2014 .

[28]  P. Boursot,et al.  Home-loving boreal hare mitochondria survived several invasions in Iberia: the relative roles of recurrent hybridisation and allele surfing , 2013, Heredity.

[29]  V. Belkin,et al.  The genetic diversity and differentiation in the mountain hare (Lepus timidus) population of Karelia , 2013, Russian Journal of Genetics: Applied Research.

[30]  P. Alves,et al.  Sequencing of modern Lepus VDJ genes shows that the usage of VHn genes has been retained in both Oryctolagus and Lepus that diverged 12 million years ago , 2013, Immunogenetics.

[31]  Osamu Nishimura,et al.  aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity , 2013, Nucleic Acids Res..

[32]  M. Apollonio,et al.  Influence of management regime and population history on genetic diversity and population structure of brown hares (Lepus europaeus) in an Italian province , 2013, European Journal of Wildlife Research.

[33]  M. Gossner,et al.  Multiple Glacial Refugia of the Low-Dispersal Ground Beetle Carabus irregularis: Molecular Data Support Predictions of Species Distribution Models , 2013, PloS one.

[34]  J. Kool,et al.  Population connectivity: recent advances and new perspectives , 2013, Landscape Ecology.

[35]  Rod Peakall,et al.  GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update , 2012, Bioinform..

[36]  J. Obeso,et al.  Population genetic structure and diversity of the endangered Cantabrian capercaillie , 2012 .

[37]  P. Boursot,et al.  Recurrent introgression of mitochondrial DNA among hares (Lepus spp.) revealed by species-tree inference and coalescent simulations. , 2012, Systematic biology.

[38]  P. Boursot,et al.  INTERSPECIFIC X‐CHROMOSOME AND MITOCHONDRIAL DNA INTROGRESSION IN THE IBERIAN HARE: SELECTION OR ALLELE SURFING? , 2011, Evolution; international journal of organic evolution.

[39]  A. Lowe,et al.  Building evolutionary resilience for conserving biodiversity under climate change , 2010, Evolutionary applications.

[40]  L. Excoffier,et al.  Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows , 2010, Molecular ecology resources.

[41]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[42]  P. Boursot,et al.  The genomic legacy from the extinct Lepus timidus to the three hare species of Iberia: contrast between mtDNA, sex chromosomes and autosomes , 2009, Molecular ecology.

[43]  T. Schmitt Biogeographical and evolutionary importance of the European high mountain systems , 2009, Frontiers in Zoology.

[44]  P. Boursot,et al.  The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[45]  N. Ferrand,et al.  Evidence for genetic similarity of two allopatric European hares (Lepus corsicanus and L. castroviejoi) inferred from nuclear DNA sequences. , 2008, Molecular phylogenetics and evolution.

[46]  J. Lee‐Yaw,et al.  Postglacial range expansion from northern refugia by the wood frog, Rana sylvatica , 2007, Molecular ecology.

[47]  Pilar García,et al.  Detailed model of shelter areas for the Cantabrian brown bear , 2007, Ecol. Informatics.

[48]  A. Rambaut,et al.  BEAST: Bayesian evolutionary analysis by sampling trees , 2007, BMC Evolutionary Biology.

[49]  Palle Villesen,et al.  FaBox: an online toolbox for fasta sequences , 2007 .

[50]  L. Luiselli,et al.  Body Size and Altitude Partitioning of the Hares Lepus Europaeus and L. Corsicanus Living in Sympatry and Allopatry in Italy , 2007 .

[51]  D. Haydon,et al.  Maximum-Likelihood Estimation of Allelic Dropout and False Allele Error Rates From Microsatellite Genotypes in the Absence of Reference Data , 2007, Genetics.

[52]  P. Boursot,et al.  The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula , 2006, Molecular ecology.

[53]  E. Duke,et al.  Spatial patterns of genetic diversity across European subspecies of the mountain hare, Lepus timidus L. , 2006, Heredity.

[54]  P. Smouse,et al.  genalex 6: genetic analysis in Excel. Population genetic software for teaching and research , 2006 .

[55]  A. Estonba,et al.  The genetic distinctiveness of the three Iberian hare species: Lepus europaeus, L. granatensis, and L. castroviejoi , 2006 .

[56]  J. Cook,et al.  Hares on ice: phylogeography and historical demographics of Lepus arcticus, L. othus, and L. timidus (Mammalia: Lagomorpha) , 2005, Molecular ecology.

[57]  P. Boursot,et al.  Invasion from the cold past: extensive introgression of mountain hare (Lepus timidus) mitochondrial DNA into three other hare species in northern Iberia , 2005, Molecular ecology.

[58]  G. Evanno,et al.  Detecting the number of clusters of individuals using the software structure: a simulation study , 2005, Molecular ecology.

[59]  P. Taberlet,et al.  Low genotyping error rates in wild ungulate faeces sampled in winter , 2004 .

[60]  R. Frankham,et al.  Most species are not driven to extinction before genetic factors impact them. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  C. Oosterhout,et al.  Micro-Checker: Software for identifying and correcting genotyping errors in microsatellite data , 2004 .

[62]  P. Taberlet,et al.  A Multiplex Pre-Amplification Method that Significantly Improves Microsatellite Amplification and Error Rates for Faecal DNA in Limiting Conditions , 2004, Conservation Genetics.

[63]  T. J. Robinson,et al.  A molecular supermatrix of the rabbits and hares (Leporidae) allows for the identification of five intercontinental exchanges during the Miocene. , 2004, Systematic biology.

[64]  Hui Li Li,et al.  A real-time PCR for SARS-coronavirus incorporating target gene pre-amplification , 2003, Biochemical and Biophysical Research Communications.

[65]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[66]  N. Ferrand,et al.  Ancient introgression of Lepus timidus mtDNA into L. granatensis and L. europaeus in the Iberian Peninsula. , 2003, Molecular phylogenetics and evolution.

[67]  D. H. Reed,et al.  Correlation between Fitness and Genetic Diversity , 2003 .

[68]  Nathaniel Valière gimlet: a computer program for analysing genetic individual identification data , 2002 .

[69]  J. Wang,et al.  A pseudo-likelihood method for estimating effective population size from temporally spaced samples. , 2001, Genetical research.

[70]  J. Croxall,et al.  The influence of parental relatedness on reproductive success , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[71]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[72]  A. Widmer,et al.  Glacial refugia: sanctuaries for allelic richness, but not for gene diversity. , 2001, Trends in ecology & evolution.

[73]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[74]  Andrew Rambaut,et al.  Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies , 2000, Bioinform..

[75]  E. Randi,et al.  Species distinction and evolutionary relationships of the Italian hare (Lepus corsicanus) as described by mitochondrial DNA sequencing , 1999, Molecular ecology.

[76]  G. Luikart,et al.  Empirical Evaluation of a Test for Identifying Recently Bottlenecked Populations from Allele Frequency Data , 1998 .

[77]  F. Ballesteros,et al.  Epizootiology of sarcoptic mange in a population of cantabrian chamois (Rupicapra pyrenaica parva) in northwestern Spain. , 1997, Veterinary parasitology.

[78]  J M Cornuet,et al.  Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. , 1996, Genetics.

[79]  J. Goudet FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics , 1995 .

[80]  É. Marboutin,et al.  Survival Pattern of European Hare in a Decreasing Population , 1995 .

[81]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[82]  P. Boursot,et al.  Speciation and paraphyly in western mediterranean hares (Lepus castroviejoi, L. europaeus, L. granatensis, andL. capensis) revealed by mitochondrial DNA phylogeny , 1994, Biochemical Genetics.

[83]  N. Freimer,et al.  Mutational processes of simple-sequence repeat loci in human populations. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[84]  W. Li,et al.  Statistical tests of neutrality of mutations. , 1993, Genetics.

[85]  F. Tajima Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. , 1989, Genetics.

[86]  N. Barton,et al.  The barrier to genetic exchange between hybridising populations , 1986, Heredity.

[87]  G. Corbet Relationships and origins of the European lagomorphs , 1986 .

[88]  G. McCracken,et al.  ON ESTIMATING RELATEDNESS USING GENETIC MARKERS , 1985, Evolution; international journal of organic evolution.

[89]  M. Nei,et al.  Genetic drift and estimation of effective population size. , 1981, Genetics.

[90]  Masatoshi Nei,et al.  Genetic Distance between Populations , 1972, The American Naturalist.

[91]  S. Wright THE INTERPRETATION OF POPULATION STRUCTURE BY F‐STATISTICS WITH SPECIAL REGARD TO SYSTEMS OF MATING , 1965 .

[92]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[93]  S. Wright,et al.  Isolation by Distance. , 1943, Genetics.

[94]  Theunis Piersma,et al.  The interplay between habitat availability and population differentiation , 2012 .

[95]  P. Alves,et al.  Population genetics of cape and brown hares (Lepus capensis and L. europaeus): A test of Petter's hypothesis of conspecificity , 2008 .

[96]  P. Alves,et al.  Are Lepus corsicanus and L. castroviejoi conspecific? Evidence from the analysis of nuclear markers , 2007 .

[97]  P. Kasapidis,et al.  The shaping of mitochondrial DNA phylogeographic patterns of the brown hare (Lepus europaeus) under the combined influence of Late Pleistocene climatic fluctuations and anthropogenic translocations. , 2005, Molecular phylogenetics and evolution.

[98]  H. Bandelt,et al.  Median-joining networks for inferring intraspecific phylogenies. , 1999, Molecular biology and evolution.

[99]  F. Bonhomme,et al.  Caractérisation biochimique du complexe d’espèces du genre Lepus en Espagne , 1986 .

[100]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .