Asymptotically Optimal Optical Orthogonal Signature Pattern Codes

Optical orthogonal signature pattern codes (OOSPCs) have played an important role in a novel type of optical code-division multiple-access network for 2-D image transmission. In this paper, we give four direct constructions for OOSPCs based on polynomials and rational functions over finite fields. We also use <inline-formula> <tex-math notation="LaTeX">$r$ </tex-math></inline-formula>-simple matrices to present a recursive construction for OOSPCs. These constructions yield new families of asymptotically optimal OOSPCs.

[1]  Fan Chung Graham,et al.  Optical orthogonal codes: Design, analysis, and applications , 1989, IEEE Trans. Inf. Theory.

[2]  Yanxun Chang,et al.  Combinatorial Constructions for Optical Orthogonal Codes , 2006 .

[3]  P. Vijay Kumar,et al.  Optical orthogonal codes-New bounds and an optimal construction , 1990, IEEE Trans. Inf. Theory.

[4]  Anshi Xu,et al.  A new family of 2-D optical orthogonal codes and analysis of its performance in optical CDMA access networks , 2006, Journal of Lightwave Technology.

[5]  Nabeel A. Riza,et al.  Spatial Optical CDMA , 1995, IEEE J. Sel. Areas Commun..

[6]  Jin-Ho Chung,et al.  New construction of asymptotically optimal optical orthogonal codes , 2015, 2015 IEEE Information Theory Workshop - Fall (ITW).

[7]  Ken-ichi Kitayama,et al.  Novel spatial spread spectrum based fiber optic CDMA networks for image transmission , 1994, IEEE J. Sel. Areas Commun..

[8]  Marco Buratti,et al.  Cyclic Designs with Block Size 4 and Related Optimal Optical Orthogonal Codes , 2002, Des. Codes Cryptogr..

[9]  Yanxun Chang,et al.  Two classes of optimal two-dimensional OOCs , 2012, Des. Codes Cryptogr..

[10]  C. Colbourn,et al.  CORR 99-01 Applications of Combinatorial Designs to Communications , Cryptography , and Networking , 1999 .

[11]  S. V. Maric,et al.  Multirate fiber-optic CDMA: system design and performance analysis , 1998 .

[12]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. I. Fundamental principles , 1989, IEEE Trans. Commun..

[13]  Moriya Nakamura,et al.  Image fiber-optic two-dimensional parallel links based upon optical space-CDMA: experiment , 1997 .

[14]  Guu-chang Yang,et al.  Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks , 1997, IEEE Trans. Commun..

[15]  Solomon W. Golomb,et al.  A new recursive construction for optical orthogonal codes , 2003, IEEE Trans. Inf. Theory.

[16]  P. Vijay Kumar,et al.  Large Families of Asymptotically Optimal Two-Dimensional Optical Orthogonal Codes , 2012, IEEE Transactions on Information Theory.

[17]  Pan Rong,et al.  Further results on optimal (m,n, 4, 1) optical orthogonal signature pattern codes , 2014 .

[18]  Phil A. Davies,et al.  Asynchronous multiplexing for an optical-fibre local-area network , 1983 .

[19]  Paul R. Prucnal Optical Code Division Multiple Access : Fundamentals and Applications , 2005 .

[20]  Yanxun Chang,et al.  $(m\kern -1pt,n\kern -1pt,3\kern -1pt,1)$ Optical Orthogonal Signature Pattern Codes With Maximum Possible Size , 2015, IEEE Transactions on Information Theory.

[21]  J.A. Salehi Emerging optical code-division multiple access communication systems , 1989, IEEE Network.

[22]  北山 研一 Optical code division multiple access : a practical perspective , 2014 .

[23]  Jin-Ho Chung,et al.  Asymptotically Optimal Optical Orthogonal Codes With New Parameters , 2013, IEEE Transactions on Information Theory.

[24]  Jingjun Bao,et al.  Constructions of Strictly m-Cyclic and Semi-Cyclic H(m,n,4,3) , 2015 .

[25]  Tao Feng,et al.  Constructions for strictly cyclic 3-designs and applications to optimal OOCs with lambda=2 , 2008, J. Comb. Theory, Ser. A.

[26]  Paul R. Prucnal,et al.  Spread spectrum fiber-optic local area network using optical processing , 1986 .

[27]  Masanori Sawa,et al.  Optical Orthogonal Signature Pattern Codes With Maximum Collision Parameter $2$ and Weight $4$ , 2010, IEEE Transactions on Information Theory.

[28]  Selmer M. Johnson A new upper bound for error-correcting codes , 1962, IRE Trans. Inf. Theory.

[29]  S. Tamura,et al.  Optical code-multiplex transmission by gold sequences , 1985 .

[30]  Yun Li,et al.  Combinatorial constructions of optimal (m, n, 4, 2) optical orthogonal signature pattern codes , 2018, Des. Codes Cryptogr..

[31]  Guu-chang Yang,et al.  Two-dimensional spatial signature patterns , 1996, IEEE Trans. Commun..

[32]  Jawad A. Salehi,et al.  Code division multiple-access techniques in optical fiber networks. II. Systems performance analysis , 1989, IEEE Trans. Commun..

[33]  Ruizhong Wei,et al.  Combinatorial Constructions for Optimal Two-Dimensional Optical Orthogonal Codes , 2009, IEEE Transactions on Information Theory.

[34]  Keith E. Mellinger,et al.  2-dimensional Optical Orthogonal Codes from Singer Groups , 2009, Discret. Appl. Math..

[35]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[36]  Xiaohu Tang,et al.  Constructions of Optimal 2-D Optical Orthogonal Codes via Generalized Cyclotomic Classes , 2015, IEEE Transactions on Information Theory.