Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGAa)

Reaching ignition in direct-drive (DD) inertial confinement fusion implosions requires achieving central pressures in excess of 100 Gbar. The OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] is used to study the physics of implosions that are hydrodynamically equivalent to the ignition designs on the National Ignition Facility (NIF) [J. A. Paisner et al., Laser Focus World 30, 75 (1994)]. It is shown that the highest hot-spot pressures (up to 40 Gbar) are achieved in target designs with a fuel adiabat of α ≃ 4, an implosion velocity of 3.8 × 107 cm/s, and a laser intensity of ∼1015 W/cm2. These moderate-adiabat implosions are well understood using two-dimensional hydrocode simulations. The performance of lower-adiabat implosions is significantly degraded relative to code predictions, a common feature between DD implosions on OMEGA and indirect-drive cryogenic implosions on the NIF. Simplified theoretical models are developed to gain physical understanding of the implosion dynamics th...

[1]  S. Lele,et al.  Interaction of a converging spherical shock wave with isotropic turbulence , 2012 .

[2]  F. J. Marshall,et al.  A framed monochromatic x-ray microscope for ICF (invited) , 1997 .

[3]  S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability , 1961 .

[4]  R. Betti,et al.  Self‐consistent stability analysis of ablation fronts with large Froude numbers , 1996 .

[5]  L. F. Wang,et al.  Spike deceleration and bubble acceleration in the ablative Rayleigh-Taylor instability , 2010 .

[6]  D. Russell,et al.  Mitigation of two-plasmon decay in direct-drive inertial confinement fusion through the manipulation of ion-acoustic and Langmuir wave damping , 2013 .

[7]  Riccardo Betti,et al.  Diagnosing fuel ρR and ρR asymmetries in cryogenic deuterium-tritium implosions using charged-particle spectrometry at OMEGA , 2009 .

[8]  P. B. Radha,et al.  Improving cryogenic deuterium–tritium implosion performance on OMEGAa) , 2013 .

[9]  I. E. Golovkin,et al.  SPECT3D - A Multi-Dimensional Collisional-Radiative Code for Generating Diagnostic Signatures Based on Hydrodynamics and PIC Simulation Output , 2007 .

[10]  Samuel A. Letzring,et al.  Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light , 1989 .

[11]  Epstein,et al.  Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments. , 1987, Physical review. A, General physics.

[12]  R. Betti,et al.  High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion , 2005 .

[13]  D. Meyerhofer,et al.  Experimental reduction of laser imprinting and Rayleigh–Taylor growth in spherically compressed, medium-Z-doped plastic targets , 2012 .

[14]  L. J. Atherton,et al.  Progress Towards Ignition on the National Ignition Facility , 2013 .

[15]  V N Goncharov,et al.  Demonstration of the improved rocket efficiency in direct-drive implosions using different ablator materials. , 2013, Physical review letters.

[16]  C Sorce,et al.  Shell trajectory measurements from direct-drive implosion experiments. , 2012, The Review of scientific instruments.

[17]  W. Manheimer,et al.  Steady‐state planar ablative flow , 1981 .

[18]  Uri Alon,et al.  Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws , 2001 .

[19]  John Lindl,et al.  Ignition scaling laws and their application to capsule design , 2000 .

[20]  S. Skupsky,et al.  Deceleration phase of inertial confinement fusion implosions , 2002 .

[21]  V N Goncharov,et al.  High-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited). , 2012, The Review of scientific instruments.

[22]  Gregory A. Moses,et al.  Inertial confinement fusion , 1982 .

[23]  P. B. Radha,et al.  Demonstration of the highest deuterium-tritium areal density using multiple-picket cryogenic designs on OMEGA. , 2010, Physical review letters.

[24]  Jonathan D. Zuegel,et al.  Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA , 2013 .

[25]  V. Goncharov,et al.  Performance of Direct-Drive Cryogenic Targets on OMEGA , 2007 .

[26]  T. C. Sangster,et al.  Ten-inch manipulator-based neutron temporal diagnostic for cryogenic experiments on OMEGA , 2003 .

[27]  H. Brysk,et al.  Fusion neutron energies and spectra , 1973 .

[28]  Stefano Atzeni,et al.  The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter , 2004 .

[29]  John Kelly,et al.  Crossed-beam energy transfer in direct-drive implosions , 2011 .

[30]  T. Boehly,et al.  Effectiveness of silicon as a laser shinethrough barrier for 351-nm light , 2008 .

[31]  Ramon Joe Leeper,et al.  Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil spectrometera) , 2010 .

[32]  W. Mead,et al.  A model for laser driven ablative implosions , 1980 .

[33]  T. C. Sangster,et al.  Effects of local defect growth in direct-drive cryogenic implosions on OMEGA , 2013 .

[34]  J. Meyer-ter-Vehn,et al.  The physics of inertial fusion - Hydrodynamics, dense plasma physics, beam-plasma interaction , 2004 .

[35]  V N Goncharov,et al.  Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers. , 2002, Physical review letters.

[36]  R. S. Craxton,et al.  Time-resolved absorption in cryogenic and room-temperature direct-drive implosionsa) , 2008 .

[37]  V. Goncharov,et al.  Cryogenic Deuterium and Deuterium-Tritium Direct–Drive Implosions on Omega , 2013 .

[38]  J. A. Marozas,et al.  Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA , 2004 .

[39]  R. Betti,et al.  Bubble acceleration in the ablative Rayleigh-Taylor instability. , 2006, Physical review letters.

[40]  S. Wilks,et al.  Response to “Comment on ‘Species separation in inertial confinement fusion fuels’” [Phys. Plasmas 20, 044701 (2013)] , 2013 .

[41]  V N Goncharov,et al.  Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-Z dopants. , 2012, Physical review letters.

[42]  E. Williams,et al.  Doppler shift of laser light reflected from expanding plasmas , 1981 .

[43]  S. Wilks,et al.  Species separation in inertial confinement fusion fuels , 2013 .

[44]  J. F. Myatt,et al.  Modeling Crossed-Beam Energy Transfer in Implosion Experiments on OMEGA , 2009 .

[45]  D. Layzer,et al.  On the Instability of Superposed Fluids in a Gravitational Field. , 1955 .

[46]  Denis G. Colombant,et al.  High-gain direct-drive target design for laser fusion , 2000 .

[47]  J. J. Thomson,et al.  Theory and simulation of stimulated Brillouin scatter excited by nonabsorbed light in laser fusion systems , 1981 .

[48]  Albert Simon,et al.  On the inhomogeneous two‐plasmon instability , 1983 .

[49]  Sanz Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Chihiro Yamanaka,et al.  Inertial confinement fusion: The quest for ignition and energy gain using indirect drive , 1999 .

[51]  Samuel A. Letzring,et al.  Initial performance results of the OMEGA laser system , 1997 .

[52]  T. C. Sangster,et al.  Laser-beam zooming to mitigate crossed-beam energy losses in direct-drive implosions. , 2013, Physical review letters.

[53]  P. Lovoi,et al.  Laser paint stripping offers control and flexibility , 1994 .

[54]  D. T. Michel,et al.  Experimental validation of the two-plasmon-decay common-wave process. , 2012, Physical review letters.

[55]  Paul T. Springer,et al.  Integrated diagnostic analysis of inertial confinement fusion capsule performancea) , 2013 .