Quantum Logic in Dagger Categories with Kernels

This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categorical/logical properties, in terms of kernel fibrations, such as existence of pullbacks, factorisation, and orthomodularity. For instance, the Sasaki hook and and-then connectives are obtained, as adjoints, via the existential-pullback adjunction between fibres.

[1]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[2]  ON QUANTIC CONUCLEI IN ORTHOMODULAR LATTICES , 2011 .

[3]  M. Makkai,et al.  First order categorical logic , 1977 .

[4]  Daniel Lehmann,et al.  A Presentation of Quantum Logic Based on an and then Connective , 2007, J. Log. Comput..

[5]  Adam Grabowski,et al.  Orthomodular Lattices , 2008, Formaliz. Math..

[6]  S Mac Lane,et al.  AN ALGEBRA OF ADDITIVE RELATIONS. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Paul Taylor,et al.  Practical Foundations of Mathematics , 1999, Cambridge studies in advanced mathematics.

[8]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[9]  Gonzalo E. Reyes,et al.  Doctrines in Categorical Logic , 1977 .

[10]  Chris Heunen,et al.  An embedding theorem for Hilbert categories , 2008, 0811.1448.

[11]  J. Coykendall,et al.  An embedding theorem , 2011 .

[12]  P. Freyd Abelian categories : an introduction to the theory of functors , 1965 .

[13]  Bob Coecke,et al.  The Sasaki Hook Is Not a [Static] Implicative Connective but Induces a Backward [in Time] Dynamic One That Assigns Causes , 2001 .

[14]  Philip J. Scott,et al.  A categorical model for the geometry of interaction , 2006, Theor. Comput. Sci..

[15]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .

[16]  Ernest G. Manes,et al.  Monads, Matrices and Generalized Dynamic Algebra , 1988, Categorial Methods in Computer Science.

[17]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[18]  K. I. Rosenthal Quantales and their applications , 1990 .

[19]  Michael Barr,et al.  Algebraically compact functors , 1992 .

[20]  C. Heunen Quantifiers for quantum logic , 2008, 0811.1457.

[21]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[22]  Bart Jacobs,et al.  Categorical Logic and Type Theory , 2001, Studies in logic and the foundations of mathematics.

[23]  Dieter Puppe,et al.  Korrespondenzen in abelschen Kategorien , 1962 .

[24]  B. Rumbos,et al.  A characterization of nuclei in orthomodular and quantic lattices , 1991 .

[25]  Pekka Lahti,et al.  The Theory of Symmetry Actions in Quantum Mechanics: with an Application to the Galilei Group , 2004 .