Totally tight Chv"atal-Gomory cuts

Let P := {x ∈ R n : Ax 6 b} be a polyhedron and PI its integral hull. A Chv atal-Gomory (CG) cut is a valid inequality for PI of the form (� T A)x 6 � � T b� , with � ∈ R m ;� T A ∈ Z n andT bZ. We give a polynomial-time algorithm which, given some x ∗ ∈ P, detects whether a totally tight CG cut exists, i.e., whether there is a CG cut such that (� T A)x ∗ = � T b .S uch aC G cut is violated by as much as possible under the assumption that x ∗ ∈ P. c � 2002 Elsevier Science B.V. All rights reserved.

[1]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[2]  J. Edmonds Systems of distinct representatives and linear algebra , 1967 .

[3]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[4]  J. Edmonds,et al.  A Min-Max Relation for Submodular Functions on Graphs , 1977 .

[5]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[6]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[7]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[8]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[9]  M. Hung,et al.  An application of the Hermite normal form in integer programming , 1990 .

[10]  Milind Dawande,et al.  Combining and Strengthening Gomory Cuts , 1995, IPCO.

[11]  Matteo Fischetti,et al.  {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..

[12]  George Labahn,et al.  Asymptotically fast computation of Hermite normal forms of integer matrices , 1996, ISSAC '96.

[13]  George Havas,et al.  Extended GCD and Hermite Normal Form Algorithms via Lattice Basis Reduction , 1998, Exp. Math..

[14]  Friedrich Eisenbrand,et al.  NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..

[15]  Matteo Fischetti,et al.  On the separation of maximally violated mod-k cuts , 1999, Math. Program..

[16]  Friedrich Eisenbrand,et al.  Cutting Planes and the Elementary Closure in Fixed Dimension , 2001, Math. Oper. Res..