Totally tight Chv"atal-Gomory cuts
暂无分享,去创建一个
[1] Ralph E. Gomory,et al. An algorithm for integer solutions to linear programs , 1958 .
[2] J. Edmonds. Systems of distinct representatives and linear algebra , 1967 .
[3] Vasek Chvátal,et al. Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..
[4] J. Edmonds,et al. A Min-Max Relation for Submodular Functions on Graphs , 1977 .
[5] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[6] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[7] Laurence A. Wolsey,et al. Integer and Combinatorial Optimization , 1988 .
[8] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[9] M. Hung,et al. An application of the Hermite normal form in integer programming , 1990 .
[10] Milind Dawande,et al. Combining and Strengthening Gomory Cuts , 1995, IPCO.
[11] Matteo Fischetti,et al. {0, 1/2}-Chvátal-Gomory cuts , 1996, Math. Program..
[12] George Labahn,et al. Asymptotically fast computation of Hermite normal forms of integer matrices , 1996, ISSAC '96.
[13] George Havas,et al. Extended GCD and Hermite Normal Form Algorithms via Lattice Basis Reduction , 1998, Exp. Math..
[14] Friedrich Eisenbrand,et al. NOTE – On the Membership Problem for the Elementary Closure of a Polyhedron , 1999, Comb..
[15] Matteo Fischetti,et al. On the separation of maximally violated mod-k cuts , 1999, Math. Program..
[16] Friedrich Eisenbrand,et al. Cutting Planes and the Elementary Closure in Fixed Dimension , 2001, Math. Oper. Res..