Acidosis inhibits spontaneous activity and membrane currents in myocytes isolated from the rabbit atrioventricular node.

[1]  H. Cingolani,et al.  Acidosis and arrhythmias in cardiac muscle. , 1994, Cardiovascular research.

[2]  E. Carmeliet,et al.  The effect of external pH on the delayed rectifying K+ current in cardiac ventricular myocytes , 2000, Pflügers Archiv.

[3]  S M Cobbe,et al.  Adenosine increases potassium conductance in isolated rabbit atrioventricular nodal myocytes. , 1995, Cardiovascular research.

[4]  Yi-Mei Du,et al.  Ionic basis of ischemia-induced bradycardia in the rabbit sinoatrial node. , 2007, Journal of molecular and cellular cardiology.

[5]  D. Noble,et al.  Displacement of activator thresholds in cardiac muscle by protons and calcium ions. , 1978, The Journal of physiology.

[6]  In vitro and in vivo electrocardiographic evaluation of the novel calcium antagonist monatepil on cardiac conduction system. , 1993, Arzneimittel-Forschung.

[7]  O Gryshchenko,et al.  Ischemia alters the electrical activity of pacemaker cells isolated from the rabbit sinoatrial node. , 2002, American journal of physiology. Heart and circulatory physiology.

[8]  A. Workman,et al.  Rate-dependency of action potential duration and refractoriness in isolated myocytes from the rabbit AV node and atrium. , 2000, Journal of molecular and cellular cardiology.

[9]  Robert H. Anderson,et al.  A Combined Morphological and Electrophysiological Study of the Atrioventricular Node of the Rabbit Heart , 1974, Circulation research.

[10]  G. Rozanski,et al.  Acidosis masks beta-adrenergic control of cardiac L-type calcium current. , 1995, Journal of molecular and cellular cardiology.

[11]  Yi-Mei Du,et al.  Simulated ischemia enhances L-type calcium current in pacemaker cells isolated from the rabbit sinoatrial node. , 2007, American journal of physiology. Heart and circulatory physiology.

[12]  J. T. Hulme,et al.  Effect of acidosis on transient outward potassium current in isolated rat ventricular myocytes. , 2000, American Journal of Physiology. Heart and Circulatory Physiology.

[13]  H. Hayakawa,et al.  Use of intravenous dofetilide in atrial flutter with hemodynamic instability. , 1996, Japanese circulation journal.

[14]  H. Irisawa,et al.  Transient Outward Current Carried by Potassium and Sodium in Quiescent Atrioventricular Node Cells of Rabbits , 1985, Circulation research.

[15]  C. Orchard,et al.  The Effect of Acidosis on the Ecg of the Rat Heart , 2001, Experimental physiology.

[16]  J. Jalife,et al.  Proton and zinc effects on HERG currents. , 1999, Biophysical journal.

[17]  M. Boyett,et al.  Characterization of the effects of ryanodine, TTX, E-4031 and 4-AP on the sinoatrial and atrioventricular nodes. , 2008, Progress in biophysics and molecular biology.

[18]  J. Hancox,et al.  Inhibition of L‐type calcium current by propafenone in single myocytes isolated from the rabbit atrioventricular node , 1997, British journal of pharmacology.

[19]  I. Efimov,et al.  Optical mapping of the atrioventricular junction. , 2005, Journal of electrocardiology.

[20]  J. Kentish,et al.  Effects of changes of pH on the contractile function of cardiac muscle. , 1990, The American journal of physiology.

[21]  M. Boyett,et al.  Contraction and intracellular Ca2+, Na+, and H+ during acidosis in rat ventricular myocytes. , 1992, The American journal of physiology.

[22]  C. Orchard,et al.  Compensatory role of CaMKII on ICa and SR function during acidosis in rat ventricular myocytes , 2001, Pflügers Archiv.

[23]  R. Beňačka,et al.  [Disorders of heart rhythm and ECG changes in experimental apneic states]. , 1997, Bratislavske lekarske listy.

[24]  Robert H. Anderson Das reizleitungssystem des säugetierherzens: S. Tawara Gustav Fischer, Jena, 1906; 193 pp.; , 1988 .

[25]  A Shrier,et al.  Sodium Channel Distribution Within the Rabbit Atrioventricular Node as Analysed by Confocal Microscopy , 1997, The Journal of physiology.

[26]  J. Hancox,et al.  The actions of nickel on membrane currents activated by hyperpolarisation in single cells from the rabbit atrioventricular node. , 1995, General pharmacology.

[27]  Montoya,et al.  Aspirin Intoxication in a Child Associated with Myocardial Necrosis: Is This a Drug-related Lesion? , 2003, Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society.

[28]  G. Rozanski,et al.  Acidosis masks β-adrenergic control of cardiac L-type calcium current , 1995 .

[29]  Godfrey L. Smith,et al.  Acidosis delays conduction through the atrioventricular node , 2007 .

[30]  E. Cingolani,et al.  Chronotropic response of isolated atria to acid base alterations. , 1978, Archives internationales de physiologie et de biochimie.

[31]  M J Janse,et al.  Morphology and electrophysiology of the mammalian atrioventricular node. , 1988, Physiological reviews.

[32]  M. Sanguinetti,et al.  Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents , 1990, The Journal of general physiology.

[33]  W. L. Nelson,et al.  The Pharmacokinetics and Pharmacodynamics of d- and dl-Verapamil in Rabbits , 1985, Journal of cardiovascular pharmacology.

[34]  W. Ho,et al.  Blockade of HERG channels expressed in Xenopus oocytes by external H+ , 1999, Pflügers Archiv.

[35]  C. Orchard,et al.  Electrophysiological response of rat ventricular myocytes to acidosis. , 2002, American journal of physiology. Heart and circulatory physiology.

[36]  J. Hancox,et al.  An investigation of the role played by the E-4031-sensitive (rapid delayed rectifier) potassium current in isolated rabbit atrioventricular nodal and ventricular myocytes , 1999, Pflügers Archiv.

[37]  Bernd Lindemann,et al.  Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli , 2001, Nature.

[38]  S. Houser,et al.  Acidosis facilitates spontaneous sarcoplasmic reticulum Ca2+ release in rat myocardium , 1987, The Journal of general physiology.

[39]  R. Lazzara,et al.  Effect of GLG-V-13, a class III antiarrhythmic agent, on potassium currents in rabbit ventricular myocytes. , 2000, Life sciences.

[40]  A J Levi,et al.  L-type calcium current in rod- and spindle-shaped myocytes isolated from rabbit atrioventricular node. , 1994, The American journal of physiology.

[41]  P. Daleau,et al.  Modulation of HERG potassium channel properties by external pH , 1999, Pflügers Archiv.

[42]  J. Hancox,et al.  A method for making rapid changes of superfusate whilst maintaining temperature at 37°C , 1996, Pflügers Archiv.

[43]  Jules C. Hancox,et al.  Progress and Gaps in Understanding the Electrophysiological Properties of Morphologically Normal Cells from the Cardiac atrioventricular Node , 2003, Int. J. Bifurc. Chaos.

[44]  W. Giles,et al.  Electrophysiological effects of ibutilide on the delayed rectifier K(+) current in rabbit sinoatrial and atrioventricular node cells. , 2000, European journal of pharmacology.

[45]  A Shrier,et al.  Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. , 1996, The Journal of physiology.

[46]  D. Zipes,et al.  Action of Manganese Ions and Tetrodotoxin on Atrioventricular Nodal Transmembrane Potentials in Isolated Rabbit Hearts , 1973, Circulation research.

[47]  Jules C. Hancox,et al.  A method for isolating rabbit atrioventricular node myocytes which retain normal morphology and function. , 1993, The American journal of physiology.

[48]  Shi-sheng Zhou,et al.  Morphological and electrophysiological properties of single myocardial cells from Koch triangle of rabbit heart , 2006, Chinese medical journal.

[49]  H. Satoh,et al.  On the mechanism by which changes in extracellular pH affect the electrical activity of the rabbit sino‐atrial node. , 1986, The Journal of physiology.

[50]  G. Isenberg,et al.  Calcium tolerant ventricular myocytes prepared by preincubation in a “KB medium” , 1982, Pflügers Archiv.

[51]  R. Vaughan-Jones,et al.  Application of a new pH-sensitive fluoroprobe (carboxy-SNARF-1) for intracellular pH measurement in small, isolated cells , 1990, Pflügers Archiv.

[52]  K. Hashimoto,et al.  Effect of pH on the sino-atrial node cells and atrial muscle of dog. , 1983, Archives internationales de pharmacodynamie et de therapie.

[53]  A. Workman,et al.  Ionic basis of a differential effect of adenosine on refractoriness in rabbit AV nodal and atrial isolated myocytes. , 1999, Cardiovascular research.

[54]  E. Grenadier,et al.  Complete atrioventricular block, shock, and hyperkalemia induced by toxic adenoma of the thyroid gland. , 1981, Heart & lung : the journal of critical care.

[55]  Jules C. Hancox,et al.  Characteristics of the delayed rectifier K current compared in myocytes isolated from the atrioventricular node and ventricle of the rabbit heart , 1996, Pflügers Archiv.

[56]  J. Hancox,et al.  The hyperpolarisation-activated current,If, is not required for pacemaking in single cells from the rabbit atrioventricular node , 1994, Pflügers Archiv.

[57]  J. Hancox,et al.  A method for making rapid changes of superfusate whilst maintaining temperature at 37 degrees C. , 1996, Pflugers Archiv : European journal of physiology.

[58]  A J Levi,et al.  Actions of the digitalis analogue strophanthidin on action potentials and L‐type calcium current in single cells isolated from the rabbit atrioventricular node , 1996, British journal of pharmacology.

[59]  R. Anderson,et al.  Histologic and histochemical evidence concerning the presence of morphologically distinct cellular zones within the rabbit atrioventricular node , 1972, The Anatomical record.

[60]  John S. Mitcheson,et al.  Characteristics of a transient outward current (sensitive to 4-aminopyridine) in Ca2+-tolerant myocytes isolated from the rabbit atrioventricular node , 1999, Pflügers Archiv.

[61]  Yoshihisa Kurachi,et al.  Action potential and membrane currents of single pacemaker cells of the rabbit heart , 1984, Pflügers Archiv.

[62]  R. Lazzara,et al.  Electrophysiological and inotropic characterization of a novel class III antiarrhythmic agent, GLG-V-13, in the mammalian heart. , 1996, Journal of cardiovascular pharmacology.

[63]  W R Giles,et al.  [Electrophysiological heterogeneity of rabbit atrioventricular node cells: possible relationship to fast and slow pathways]. , 1998, Journal of cardiology.

[64]  D P Zipes,et al.  Effects of Agents which Inhibit the Slow Channel on Sinus Node Automaticity and Atrioventricular Conduction in the Dog , 1974, Circulation research.

[65]  J. Hancox,et al.  Na‐Ca Exchange Tail Current Indicates Voltage Dependence of the Cai Transient in Rabbit Ventricular Myocytes , 1995, Journal of cardiovascular electrophysiology.