Potential Energies and Collision Integrals for Interactions of Carbon and Nitrogen Atoms

Potential energies for C 2 and CN are calculated by a configuration interaction method for those states for which the molecule dissociates into ground state atoms. The potential energy curves are shown graphically; parameters determined from the potential energy wells are tabulated and compared with the corresponding data available from measurements. The potential energies of the 7Σu+ and A' 5 Σ g + states of N 2 are computed from very accurate state-of-the-art molecular structure calculations and improved using the results of spectroscopic measurements, respectively. Transport cross sections are tabulated for a broad range of collision energies. Collision integrals are determined from the cross sections; the C-C and C-N results are tabulated for temperatures in the range 300-30,000 K. The improved collision integrals for N-N interactions differ from the corresponding results of an existing tabulation by a small insignificant amount. The scattering results are used to validate simple methods for estimating collision integrals and to examine the diffusion, viscosity, and thermal diffusion in a gas composed of carbon and nitrogen atoms.

[1]  C. Bauschlicher,et al.  Do bond functions help for the calculation of accurate bond energies , 1998 .

[2]  Fu-Ming Tao,et al.  Mo/ller–Plesset perturbation investigation of the He2 potential and the role of midbond basis functions , 1992 .

[3]  C. Bauschlicher,et al.  Theoretical study of the 7Σ+u state of N2 , 1986 .

[4]  Eugene Levin,et al.  HH2 collision integrals and transport coefficients , 1996 .

[5]  D. Herschbach,et al.  Combination Rules for van der Waals Force Constants , 1970 .

[6]  Transport properties of boron and aluminum , 2000 .

[7]  E. R. Cohen,et al.  The 1986 CODATA Recommended Values Of the Fundamental Physical Constants , 1987, Journal of Research of the National Bureau of Standards.

[8]  F. Smith Atomic Distortion and the Combining Rule for Repulsive Potentials , 1972 .

[9]  C. W. Bauschlicher,et al.  The Dissociation Energies of CH4 and C2H2 Revisited , 1995 .

[10]  William A. Wakeham,et al.  Intermolecular Forces: Their Origin and Determination , 1983 .

[11]  Ernest R. Davidson,et al.  Configuration interaction calculations on the nitrogen molecule , 1974 .

[12]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[13]  J. Kestin,et al.  EQUILIBRIUM AND TRANSPORT PROPERTIES OF GAS MIXTURES AT LOW DENSITY : ELEVEN POLYATOMIC GASES AND FIVE NOBLE GASES , 1990 .

[14]  D. Schwenke,et al.  Comparison of semi-classical and quantum-mechanical methods for the determination of transport cross sections , 1994 .

[15]  T. Y. Chang Moderately Long-Range Interatomic Forces , 1967 .

[16]  R. Bartlett Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules , 1981 .

[17]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[18]  K. Peterson Accurate multireference configuration interaction calculations on the lowest 1Σ+ and 3Π electronic states of C2, CN+, BN, and BO+ , 1995 .

[19]  F. J. Smith Low energy elastic and resonant exchange cross sections between complex atoms , 1967 .

[20]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[21]  T. Dunning,et al.  Benchmark calculations with correlated molecular wavefunctions. XIII. Potential energy curves for He2, Ne2 and Ar2 using correlation consistent basis sets through augmented sextuple zeta , 1999 .

[22]  M. Keil,et al.  The HeNe interatomic potential from multiproperty fits and Hartree–Fock calculations , 1988 .

[23]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[24]  C. W. Bauschlicher,et al.  The dissociation energies of He2, HeH, and ArH: A bond function study , 1999 .

[25]  E. Levin,et al.  H–N2 interaction energies, transport cross sections, and collision integrals , 1992 .

[26]  C. W. Bauschlicher,et al.  How large is the effect of 1s correlation on the De, ωe, and re of N2? , 1994 .

[27]  C. Bauschlicher,et al.  Theoretical study of hydrogen and nitrogen interactions - N-H transport cross sections and collision integrals , 1992 .

[28]  S. Langhoff,et al.  A theoretical study of the electronic transition moment for the C2 Swan band system , 1978 .

[29]  E. Levin,et al.  Potential Energies and Collision Integrals for the Interactions of Air Components , 1996 .

[30]  Vladimir V. Riabov,et al.  Approximate calculation of transport coefficients of Earth and Mars atmospheric dissociating gases , 1995 .

[31]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[32]  Eugene Levin,et al.  Transport Properties of Hydrogen , 1998 .

[33]  K. Huber,et al.  High-resolution Fourier transform spectroscopy of supersonic jets. The C″5Πui → A′5Σg+ Herman infrared bands of 14N2 , 1992 .

[34]  G. Starkschall,et al.  Calculation of Coefficients in the Power Series Expansion of the Long‐Range Dispersion Force between Atoms , 1972 .

[35]  E. Levin,et al.  Collision integrals and high temperature transport properties for N-N, O-O, and N-O , 1990 .

[36]  E. A. Mason,et al.  Transport Properties of High‐Temperature Multicomponent Gas Mixtures , 1959 .

[37]  E. Levin,et al.  Resonance charge transfer, transport cross sections, and collision integrals for N(+)(3P)-N(4S0) and O(+)(4S0)-O(3P) interactions , 1991 .

[38]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[39]  J. Desclaux Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120 , 1973 .

[40]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[41]  Harry Partridge,et al.  The N2–N2 potential energy surface , 1997 .

[42]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[43]  R. Nesbet,et al.  Electronic Structure of C2 , 1966 .

[44]  J. Halpern,et al.  Heat of formation of the cyanogen radical , 1992 .

[45]  Edward A. Mason,et al.  COLLISION INTEGRALS FOR THE TRANSPORT PROPERTIES OF DISSOCIATING AIR AT HIGH TEMPERATURES , 1962 .

[46]  Angela K. Wilson,et al.  Benchmark calculations with correlated molecular wave functions XII. Core correlation effects on the homonuclear diatomic molecules B2-F2 , 1997 .

[47]  R. Urdahl,et al.  An experimental determination of the heat of formation of C2 and the CH bond dissociation energy in C2H , 1991 .

[48]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[49]  C. W. Bauschlicher,et al.  The dissociation energy of CN and C2 , 1994 .

[50]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[51]  Charles W. Bauschlicher,et al.  Theoretical study of the A’ 5Σ+g and C‘ 5Πu states of N2: Implications for the N2 afterglow , 1988 .

[52]  B. Schneider,et al.  Ground and excited states of Ne2 and Ne2+. I. Potential curves with and without spin‐orbit coupling , 1974 .