Near-Regular Structure Discovery Using Linear Programming

Near-regular structures are common in manmade and natural objects. Algorithmic detection of such regularity greatly facilitates our understanding of shape structures, leads to compact encoding of input geometries, and enables efficient generation and manipulation of complex patterns on both acquired and synthesized objects. Such regularity manifests itself both in the repetition of certain geometric elements, as well as in the structured arrangement of the elements. We cast the regularity detection problem as an optimization and efficiently solve it using linear programming techniques. Our optimization has a discrete aspect, that is, the connectivity relationships among the elements, as well as a continuous aspect, namely the locations of the elements of interest. Both these aspects are captured by our near-regular structure extraction framework, which alternates between discrete and continuous optimizations. We demonstrate the effectiveness of our framework on a variety of problems including near-regular structure extraction, structure-preserving pattern manipulation, and markerless correspondence detection. Robustness results with respect to geometric and topological noise are presented on synthesized, real-world, and also benchmark datasets.

[1]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[2]  Hans-Peter Seidel,et al.  Shape Analysis with Subspace Symmetries , 2011, Comput. Graph. Forum.

[3]  Niloy J. Mitra,et al.  Symmetry in 3D Geometry: Extraction and Applications , 2013, Comput. Graph. Forum.

[4]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[5]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[6]  Ralph R. Martin,et al.  Constructing Regularity Feature Trees for Solid Models , 2006, GMP.

[7]  Andrew Zisserman,et al.  Geometric Grouping of Repeated Elements within Images , 1998, BMVC.

[8]  D'arcy W. Thompson,et al.  On Growth and Form , 1917, Nature.

[9]  Leonidas J. Guibas,et al.  Eurographics Symposium on Geometry Processing (2007) Reconstruction of Deforming Geometry from Time-varying Point Clouds , 2022 .

[10]  John B. Moore,et al.  Global registration of multiple 3D point sets via optimization-on-a-manifold , 2005, SGP '05.

[11]  Alexei A. Efros,et al.  Discovering Texture Regularity as a Higher-Order Correspondence Problem , 2006, ECCV.

[12]  N. Mitra,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, SIGGRAPH 2009.

[13]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[14]  Niloy J. Mitra,et al.  Symmetry in 3D Geometry: Extraction and Applications , 2013, Comput. Graph. Forum.

[15]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[16]  Daniela Giorgi,et al.  SHape REtrieval Contest 2007: Watertight Models Track , 2007 .

[17]  H. Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  Dinesh Manocha,et al.  Accurate computation of the medial axis of a polyhedron , 1999, SMA '99.

[19]  Hans-Peter Seidel,et al.  Isometric registration of ambiguous and partial data , 2009, CVPR.

[20]  Daniel Cohen-Or,et al.  iWIRES: an analyze-and-edit approach to shape manipulation , 2009, ACM Trans. Graph..

[21]  Luc Van Gool,et al.  Noncombinatorial Detection of Regular Repetitions under Perspective Skew , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Leonidas J. Guibas,et al.  Discovering structural regularity in 3D geometry , 2008, SIGGRAPH 2008.

[23]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[24]  Shi-Qing Xin,et al.  Improving Chen and Han's algorithm on the discrete geodesic problem , 2009, TOGS.

[25]  H. Seidel,et al.  A connection between partial symmetry and inverse procedural modeling , 2010, ACM Trans. Graph..

[26]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere , 1995, Comput. Aided Geom. Des..

[27]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[28]  Andrew Zisserman,et al.  Geometric Grouping of Repeated Elements within Images , 1999, Shape, Contour and Grouping in Computer Vision.

[29]  Yanxi Liu,et al.  Near-regular texture analysis and manipulation , 2004, SIGGRAPH 2004.

[30]  M. Kilian,et al.  Geometric modeling in shape space , 2007, SIGGRAPH 2007.

[31]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[32]  Ralph R. Martin,et al.  Segmenting Periodic Reliefs on Triangle Meshes , 2007, IMA Conference on the Mathematics of Surfaces.

[33]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[34]  Vladimir G. Kim,et al.  Möbius Transformations For Global Intrinsic Symmetry Analysis , 2010, Comput. Graph. Forum.

[35]  Yanxi Liu,et al.  Deformed Lattice Detection in Real-World Images Using Mean-Shift Belief Propagation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Daniel Cohen-Or,et al.  Structure-aware shape processing , 2013, Eurographics.

[37]  Ligang Liu,et al.  Partial intrinsic reflectional symmetry of 3D shapes , 2009, ACM Trans. Graph..

[38]  Taku Komura,et al.  Interaction Retrieval by Spacetime Proximity Graphs , 2012, Comput. Graph. Forum.

[39]  Deok-Soo Kim,et al.  Interaction interfaces in proteins via the Voronoi diagram of atoms , 2006, Comput. Aided Des..

[40]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[41]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH 2005.

[42]  Leonidas J. Guibas,et al.  Partial and approximate symmetry detection for 3D geometry , 2006, ACM Trans. Graph..

[43]  T. Funkhouser,et al.  A planar-reflective symmetry transform for 3D shapes , 2006, SIGGRAPH '06.

[44]  Niloy J. Mitra,et al.  Intrinsic Regularity Detection in 3D Geometry , 2010, ECCV.

[45]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[46]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[47]  Leonidas J. Guibas,et al.  Discovering structural regularity in 3D geometry , 2008, ACM Trans. Graph..

[48]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[49]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[50]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[51]  Sebastian Thrun,et al.  SCAPE: shape completion and animation of people , 2005, SIGGRAPH '05.