Interfacial Thermal Resistance and Thermal Conductivity in Nanograined SrTiO3

A series of nanograined dense SrTiO3 ceramics were examined for thermal conductivity, κ, as a function of average grain size d. The κ decreased gradually with decreasing d, primarily due to a significantly increased number of interfaces as heat transport barriers. Lowest κ at 300 and 1000 K, obtained in a 55-nm-grained sample, were about 50 and 24% smaller than those of a bulk single crystal. The Kapitza-type interfacial thermal resistance was estimated, and the dependence of κ on grain size was formalized, which shows the theoretical minimum κ could be achieved at d of about 10 nm.

[1]  H. Ledbetter,et al.  Elastic constants, debye temperatures, and electron-phonon parameters of superconducting cuprates and related oxides , 1990 .

[2]  G. Bai,et al.  Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia , 2002 .

[3]  K. Ohshima,et al.  X-ray diffraction study of fine gold particles prepared by gas evaporation technique , 1981 .

[4]  T. Okuda,et al.  Large thermoelectric response of metallic perovskites: Sr 1 − x La x TiO 3 ( 0 x 0 . 1 ) , 2001 .

[5]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[6]  S. Yamanaka,et al.  Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3 , 2005 .

[7]  S. Yamanaka,et al.  Substitution effect on the thermoelectric properties of alkaline earth titanate , 2004 .

[8]  M. Mayo,et al.  The effect of grain size, porosity and yttria content on the thermal conductivity of nanocrystalline zirconia , 1998 .

[9]  Rupp,et al.  Enhanced specific-heat-capacity (cp) measurements (150-300 K) of nanometer-sized crystalline materials. , 1987, Physical review. B, Condensed matter.

[10]  Hideo Hosono,et al.  Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3. , 2007, Nature materials.

[11]  D. Stone,et al.  Grain-size-dependent thermal conductivity of nanocrystalline yttria-stabilized zirconia films grown by metal-organic chemical vapor deposition , 2000 .

[12]  H. Ohta,et al.  Thermoelectric properties of electron doped SrO(SrTiO3)n (n=1,2) ceramics , 2009 .

[13]  S. Yamanaka,et al.  Thermoelectric properties of doped BaTiO3-SrTiO3 solid solution , 2004 .

[14]  N. Padture,et al.  Thermal conductivity of dense and porous yttria-stabilized zirconia , 2001 .

[15]  H. Ohta,et al.  Enhanced Seebeck coefficient of quantum-confined electrons in SrTiO3∕SrTi0.8Nb0.2O3 superlattices , 2007 .

[16]  慎吾 太田,et al.  Nb-doped SrTiO3 多結晶体の熱電特性の粒径依存性 , 2006 .

[17]  H. Ohta,et al.  Thermoelectric phase diagram in a CaTiO3–SrTiO3–BaTiO3 system , 2007 .

[18]  S. Yamanaka,et al.  Thermoelectric properties of rare earth doped SrTiO3 , 2003 .

[19]  H. Ohta,et al.  The effect of Eu substitution on thermoelectric properties of SrTi0.8Nb0.2O3 , 2007 .

[20]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[21]  H. Ohta,et al.  Large thermoelectric performance of heavily Nb-doped SrTiO3 epitaxial film at high temperature , 2005 .