A Theoretical Analysis of Noisy Sparse Subspace Clustering on Dimensionality-Reduced Data
暂无分享,去创建一个
[1] George T. Duncan,et al. Enhancing Access to Microdata while Protecting Confidentiality: Prospects for the Future , 1991 .
[2] Dan Feldman,et al. Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering , 2013, SODA.
[3] S. Shankar Sastry,et al. Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[4] Aarti Singh,et al. Graph Connectivity in Noisy Sparse Subspace Clustering , 2015, AISTATS.
[5] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .
[6] Paul S. Bradley,et al. k-Plane Clustering , 2000, J. Glob. Optim..
[7] Nina Mishra,et al. Privacy via the Johnson-Lindenstrauss Transform , 2012, J. Priv. Confidentiality.
[8] Stratis Ioannidis,et al. Guess Who Rated This Movie: Identifying Users Through Subspace Clustering , 2012, UAI.
[9] Bernard Chazelle,et al. The Fast Johnson--Lindenstrauss Transform and Approximate Nearest Neighbors , 2009, SIAM J. Comput..
[10] John Wright,et al. Segmentation of Multivariate Mixed Data via Lossy Data Coding and Compression , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[11] Moses Charikar,et al. Finding frequent items in data streams , 2004, Theor. Comput. Sci..
[12] Hans-Peter Kriegel,et al. Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..
[13] R. Vidal,et al. Sparse Subspace Clustering: Algorithm, Theory, and Applications. , 2013, IEEE transactions on pattern analysis and machine intelligence.
[14] Giovanni Montana,et al. Subspace clustering of high-dimensional data: a predictive approach , 2012, Data Mining and Knowledge Discovery.
[15] Robert D. Nowak,et al. High-dimensional Matched Subspace Detection when data are missing , 2010, 2010 IEEE International Symposium on Information Theory.
[16] Benjamin Recht,et al. A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..
[17] Takeo Kanade,et al. A Multibody Factorization Method for Independently Moving Objects , 1998, International Journal of Computer Vision.
[18] Aarti Singh,et al. A Deterministic Analysis of Noisy Sparse Subspace Clustering for Dimensionality-reduced Data , 2015, ICML.
[19] Huan Xu,et al. Noisy Sparse Subspace Clustering , 2013, J. Mach. Learn. Res..
[20] Yudong Chen,et al. Clustering Partially Observed Graphs via Convex Optimization , 2011, ICML.
[21] Huan Xu,et al. Provable Subspace Clustering: When LRR Meets SSC , 2013, IEEE Transactions on Information Theory.
[22] Ronen Basri,et al. Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[23] Cynthia Dwork,et al. Calibrating Noise to Sensitivity in Private Data Analysis , 2006, TCC.
[24] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .
[25] Josep Domingo-Ferrer,et al. Statistical Disclosure Control , 2012 .
[26] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2013, STOC '13.
[27] Akshay Krishnamurthy,et al. On the Power of Adaptivity in Matrix Completion and Approximation , 2014, ArXiv.
[28] Larry A. Wasserman,et al. Compressed and Privacy-Sensitive Sparse Regression , 2009, IEEE Transactions on Information Theory.
[29] Ton de Waal,et al. Statistical Disclosure Control in Practice , 1996 .
[30] Michael I. Jordan,et al. On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.
[31] Helmut Bölcskei,et al. Robust Subspace Clustering via Thresholding , 2013, IEEE Transactions on Information Theory.
[32] Michael W. Mahoney,et al. Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression , 2012, STOC '13.
[33] Emmanuel J. Candès,et al. Robust Subspace Clustering , 2013, ArXiv.
[34] J. Tropp. User-Friendly Tools for Random Matrices: An Introduction , 2012 .
[35] Venu Govindaraju,et al. Dimensionality Reduction with Subspace Structure Preservation , 2014, NIPS.
[36] Robert D. Nowak,et al. High-Rank Matrix Completion , 2012, AISTATS.
[37] R. Vidal. A TUTORIAL ON SUBSPACE CLUSTERING , 2010 .
[38] Cynthia Dwork,et al. Differential Privacy , 2006, ICALP.
[39] Stephen Becker,et al. Quantum state tomography via compressed sensing. , 2009, Physical review letters.
[40] Constantine Caramanis,et al. Greedy Subspace Clustering , 2014, NIPS.
[41] Jitendra Malik,et al. Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[42] René Vidal,et al. A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.
[43] Emmanuel J. Candès,et al. A Geometric Analysis of Subspace Clustering with Outliers , 2011, ArXiv.
[44] Zhang Yi,et al. Robust Subspace Clustering via Thresholding Ridge Regression , 2015, AAAI.
[45] Marc Pollefeys,et al. A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate , 2006, ECCV.
[46] Helmut Bölcskei,et al. Subspace clustering of dimensionality-reduced data , 2014, 2014 IEEE International Symposium on Information Theory.
[47] Aaron Roth,et al. The Algorithmic Foundations of Differential Privacy , 2014, Found. Trends Theor. Comput. Sci..
[48] Yong Yu,et al. Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[49] Helmut Bölcskei,et al. Dimensionality-reduced subspace clustering , 2015, ArXiv.
[50] David P. Woodruff,et al. Subspace Embeddings for the Polynomial Kernel , 2014, NIPS.
[51] Aarti Singh,et al. Differentially private subspace clustering , 2015, NIPS.
[52] P. Tseng. Nearest q-Flat to m Points , 2000 .