Achieving integrated capture and reduction of CO2: A promising electrocatalyst

[1]  Shaohua Shen,et al.  Atomically Dispersed Metal–Nitrogen–Carbon Catalysts with d-Orbital Electronic Configuration-Dependent Selectivity for Electrochemical CO2-to-CO Reduction , 2023, ACS Catalysis.

[2]  Y. Lei,et al.  Designing a Built-In Electric Field for Efficient Energy Electrocatalysis. , 2022, ACS nano.

[3]  Xiang-Yuan Xiong,et al.  Hydropathy modulation on Bi2S3 for enhanced electrocatalytic CO2 reduction , 2022, Rare Metals.

[4]  L. Nunes,et al.  Advances in Carbon Capture and Use (CCU) Technologies: A Comprehensive Review and CO2 Mitigation Potential Analysis , 2022, Clean Technologies.

[5]  Zhanhu Guo,et al.  NH4Cl-assisted preparation of single Ni sites anchored carbon nanosheet catalysts for highly efficient carbon dioxide electroreduction , 2022, Journal of Materials Science & Technology.

[6]  Chul Jong Yoo,et al.  CuSx Catalysts by Ag-Mediated Corrosion of Cu for Electrochemical Reduction of Sulfur-Containing CO2 Gas to HCOOH , 2022, ACS Catalysis.

[7]  Shiguo Zhang,et al.  Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO , 2022, Nature Communications.

[8]  Hailiang Wang,et al.  Electrochemical CO2 Reduction in the Presence of Impurities: Influences and Mitigation Strategies. , 2022, Angewandte Chemie.

[9]  T. Breugelmans,et al.  Bifunctional Artificial Carbonic Anhydrase for the Integrated Capture and Electrochemical Conversion of CO2 , 2022, ACS Sustainable Chemistry & Engineering.

[10]  Thomas Burdyny,et al.  Energy comparison of sequential and integrated CO2 capture and electrochemical conversion , 2022, Nature Communications.

[11]  Dingsheng Wang,et al.  Understanding the structure-performance relationship of active sites at atomic scale , 2022, Nano Research.

[12]  Xiaopeng Han,et al.  Selective electrocatalytic reduction of CO2 to formate via carbon-shell-encapsulated In2O3 nanoparticles/graphene nanohybrids , 2022, Journal of Materials Science & Technology.

[13]  J. Cairney,et al.  Impurity Tolerance of Unsaturated Ni-N-C Active Sites for Practical Electrochemical CO2 Reduction , 2022, ACS Energy Letters.

[14]  T. A. Hatton,et al.  Electrochemical Carbon Dioxide Capture and Release with a Redox-Active Amine. , 2022, Journal of the American Chemical Society.

[15]  T. Breugelmans,et al.  A State of the Art Update on Integrated CO2 Capture and Electrochemical Conversion Systems , 2022, ChemElectroChem.

[16]  G. Shimizu,et al.  A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture , 2021, Science.

[17]  Qichen Wang,et al.  Trimetallic oxyhydroxides as active sites for large-current-density alkaline oxygen evolution and overall water splitting , 2021, Journal of Materials Science & Technology.

[18]  P. Kyle,et al.  Deep mitigation of CO2 and non-CO2 greenhouse gases toward 1.5 °C and 2 °C futures , 2021, Nature Communications.

[19]  Dongjin Kim,et al.  Electrocatalytic Reduction of Low Concentrations of CO2 Gas in a Membrane Electrode Assembly Electrolyzer , 2021, ACS Energy Letters.

[20]  Jing Hou,et al.  Integrated Capture and Electroreduction of Flue Gas CO2 to Formate Using Amine Functionalized SnOx Nanoparticles , 2021, ACS Energy Letters.

[21]  Jong-In Han,et al.  Electro-Synthesis of Ammonia From Dilute Nitric Oxide on a Gas Diffusion Electrode , 2021, SSRN Electronic Journal.

[22]  Zhi-Yan Chen,et al.  Bimetallic chalcogenides for electrocatalytic CO2 reduction , 2021, Rare Metals.

[23]  C. Santini,et al.  High‐Performance Porous Ionic Liquids for Low‐Pressure CO 2 Capture** , 2021, Angewandte Chemie.

[24]  M. Koper,et al.  Suppression of Hydrogen Evolution in Acidic Electrolytes by Electrochemical CO2 Reduction , 2020, Journal of the American Chemical Society.

[25]  E. Sargent,et al.  Electrochemical upgrade of CO2 from amine capture solution , 2020 .

[26]  Sean C. Smith,et al.  Confinement of Ionic Liquids at Single-Ni-Sites Boost Electroreduction of CO2 in Aqueous Electrolytes , 2020 .

[27]  Hua Zhou,et al.  Single-Atom Electrocatalysts from Multivariate MOFs for Highly Selective Reduction of CO2 at Low Pressures. , 2020, Angewandte Chemie.

[28]  M. Ding,et al.  Selective C2+ Alcohol Synthesis from Direct CO2 Hydrogenation over a Cs-Promoted Cu-Fe-Zn Catalyst , 2020 .

[29]  Beomil Kim,et al.  Over a 15.9% Solar-to-CO Conversion from Dilute CO2 Streams Catalyzed by Gold Nanoclusters Exhibiting a High CO2 Binding Affinity , 2020 .

[30]  Christine M. Gabardo,et al.  Efficient methane electrosynthesis enabled by tuning local CO2 availability. , 2020, Journal of the American Chemical Society.

[31]  Haotian Wang,et al.  Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices , 2019, Nature Energy.

[32]  Shuang Li,et al.  SO2-Induced Selectivity Change in CO2 Electroreduction. , 2019, Journal of the American Chemical Society.

[33]  Jung-Kul Lee,et al.  NADH-Free Electroenzymatic Reduction of CO2 by Conductive Hydrogel-Conjugated Formate Dehydrogenase , 2019, ACS Catalysis.

[34]  N. McKeown,et al.  A bio-inspired O2-tolerant catalytic CO2 reduction electrode. , 2019, Science bulletin.

[35]  Licheng Liu,et al.  Nitrogen-Doped Graphene Quantum Dots Enhance the Activity of Bi2 O3 Nanosheets for Electrochemical Reduction of CO2 in a Wide Negative Potential Region. , 2018, Angewandte Chemie.

[36]  M. Fridahl,et al.  Bioenergy with carbon capture and storage (BECCS): Global potential, investment preferences, and deployment barriers , 2018, Energy Research & Social Science.

[37]  M. Broda,et al.  Integrated CO2 Capture and Conversion as an Efficient Process for Fuels from Greenhouse Gases , 2018 .

[38]  D. Buttry,et al.  Electrochemical Capture and Release of Carbon Dioxide , 2017 .

[39]  Tony Pham,et al.  Tuning Pore Size in Square-Lattice Coordination Networks for Size-Selective Sieving of CO2. , 2016, Angewandte Chemie.

[40]  Oleksandr Voznyy,et al.  Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration , 2016, Nature.

[41]  Kimfung Li,et al.  A critical review of CO2 photoconversion: Catalysts and reactors , 2014 .

[42]  Mohammad Reza Rahimpour,et al.  Hydrogenation of CO2 to value-added products—A review and potential future developments , 2014 .

[43]  Yumei Zhai,et al.  Effect of Gaseous Impurities on the Electrochemical Reduction of CO2 on Copper Electrodes , 2009 .

[44]  Katsuhei Kikuchi,et al.  Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. , 1985 .

[45]  Fanchao Zhang,et al.  Edge-distributed iron single-atom moiety with efficient “trapping-conversion” for polysulfides driving high-performance of Li-S battery , 2023, Applied Catalysis B: Environmental.