Symmetric electoral systems for ambient calculi

This paper compares the expressiveness of different fragments of ambient calculi via leader election problems. We consider Mobile Ambients (MA), Safe Ambients (SA) and the Push and Pull Ambient Calculus (PAC). Cardelli and Gordon encoded the asynchronous @p-calculus into MA. Zimmer has shown that the synchronous @p-calculus without choice can be encoded in pure (no communication) SA. We show that pure MA without restriction has symmetric electoral systems, that is, it is possible to solve the problem of electing a leader in a symmetric network. By the work of Palamidessi, this implies that this fragment of MA is not encodable (under certain conditions) in the @p-calculus with separate choice. Moreover, we use the same technique to show that fragments of SA and PAC are not encodable (under certain conditions) in the @p-calculus with separate choice. We also show that particular fragments of ambient calculi do not admit a solution to leader election problems, in the same way as the @p-calculus with separate choice. This yields a fine-grained hierarchy within ambient calculi.

[1]  Nancy A. Lynch,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[2]  Davide Sangiorgi,et al.  Mobile safe ambients , 2003, TOPL.

[3]  Maria Grazia Vigliotti,et al.  Electoral Systems in Ambient Calculi , 2004, FoSSaCS.

[4]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[5]  Jos C. M. Baeten,et al.  Process Algebra , 2007, Handbook of Dynamic System Modeling.

[6]  L. Bourgé,et al.  On the existence of symmetric algorithms to find leaders in networks of communicating sequential processes , 1988 .

[7]  Luca Cardelli,et al.  Mobile Ambients , 1998, FoSSaCS.

[8]  Luca Cardelli,et al.  Mobility and Security , 2000 .

[9]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[10]  James Riely,et al.  Resource Access Control in Systems of Mobile Agents , 2002, Inf. Comput..

[11]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[12]  Pascal Zimmer On The Expressiveness Of Pure Safe Ambients , 2003, Math. Struct. Comput. Sci..

[13]  Jean-Jacques Lévy,et al.  An Asynchronous, Distributed Implementation of Mobile Ambients , 2000, IFIP TCS.

[14]  Catuscia Palamidessi,et al.  Comparing the expressive power of the synchronous and the asynchronous π-calculus , 1998, POPL '97.

[15]  Joachim Parrow,et al.  An Introduction to the π-Calculus , 2001, Handbook of Process Algebra.

[16]  Catuscia Palamidessi,et al.  Comparing the expressive power of the synchronous and asynchronous $pi$-calculi , 2003, Mathematical Structures in Computer Science.

[17]  Maria Grazia Vigliotti,et al.  Reduction Semantics for Ambient Calculi , 2004 .

[18]  Dana Angluin,et al.  Local and global properties in networks of processors (Extended Abstract) , 1980, STOC '80.

[19]  Maria Grazia Vigliotti,et al.  On Reduction Semantics for the Push and Pull Ambitent Calculus , 2002, IFIP TCS.

[20]  W. F. Osgood Introduction to the calculus , 1922 .

[21]  Maria Grazia Vigliotti,et al.  Leader election in rings of ambient processes , 2006, Theor. Comput. Sci..

[22]  Traian Muntean,et al.  Expressiveness of Point-to-Point versus Broadcast Communications , 1999, FCT.

[23]  Nadia Busi,et al.  On the expressive power of movement and restriction in pure mobile ambients , 2004, Theor. Comput. Sci..

[24]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[25]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[26]  Tom Chothia,et al.  Encoding Distributed Areas and Local Communication into the pi-Calculus , 2001, EXPRESS.

[27]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[28]  Mario Tokoro,et al.  An Object Calculus for Asynchronous Communication , 1991, ECOOP.

[29]  Michele Bugliesi,et al.  Access control for mobile agents: The calculus of boxed ambients , 2004, TOPL.

[30]  Uwe Nestmann What is a "Good" Encoding of Guarded Choice? , 2000, Inf. Comput..

[31]  Jan Vitek,et al.  The Seal Calculus , 2005, Inf. Comput..

[32]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[33]  Sergio Maffeis,et al.  On the computational strength of pure ambient calculi , 2005, Theor. Comput. Sci..