Improved Particle Swarm Optimization Algorithm Based on Random Perturbations

This paper proposed an novel improved particle swarm optimizer algorithm based on random perturbations (PSORP)with global convergence performance. Random perturbations are introduced to improve the performance of global convergence of the particle swarm optimizer (PSO). The novel search strategy enables the PSO-RP to make use of random information, in addition to experience, to achieve better quality solutions. Simulations show the novel random search strategy enables the PSO-RP to own the performance of global convergence. Five of well-known benchmarks used in evolutionary optimization methods are used to evaluate the performance of the PSO-RP. From experiments, we observe that the PSO-RP significantly improves the PSO’sperformance and performs better than the basic PSO and other recent variants of PSO.

[1]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[2]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[3]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[4]  Jiang Chuanwen,et al.  A hybrid method of chaotic particle swarm optimization and linear interior for reactive power optimisation , 2005, Math. Comput. Simul..

[5]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[6]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[7]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[8]  J. Kennedy,et al.  Population structure and particle swarm performance , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[9]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[10]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[11]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).