Small Ball Estimates for Gaussian Processes under Sobolev Type Norms

A sharp small ball estimate under Sobolev type norms is obtained for certain Gaussian processes in general and for fractional Brownian motions in particular. New method using the techniques in large deviation theory is developed for small ball estimates. As an application the Chung's LIL for fractional Brownian motions is given in this setting.

[1]  Quelques resultats d'entropie sur l'espace de Wiener , 1992 .

[2]  Z. Šidák ON MULTIVARIATE NORMAL PROBABILITIES OF RECTANGLES: THEIR DEPENDENCE ON CORRELATIONS' , 1968 .

[3]  Q. Shao,et al.  On almost sure limit inferior for B-valued stochastic processes and applications , 1994 .

[4]  James Kuelbs,et al.  Small ball probabilities for Gaussian processes with stationary increments under Hölder norms , 1995 .

[5]  Convergence of integrals of uniform empirical and quantile processes , 1993 .

[6]  A note on small ball probability of a Gaussian process with stationary increments , 1993 .

[7]  D. Slepian The one-sided barrier problem for Gaussian noise , 1962 .

[8]  GAUSSIAN PROCESSES WITH STATIONARY INCREMENTS POSSESSING DISCONTINUOUS SAMPLE PATHS , 1968 .

[9]  Michel Talagrand,et al.  The Small Ball Problem for the Brownian Sheet , 1994 .

[10]  James Kuelbs,et al.  Small ball estimates for Brownian motion and the Brownian sheet , 1993 .

[11]  Une méthode élémentaire pour l'évaluation de petites boules browniennes , 1993 .

[12]  C. G. Khatri,et al.  On Certain Inequalities for Normal Distributions and their Applications to Simultaneous Confidence Bounds , 1967 .

[13]  J. Kuelbs,et al.  Metric entropy and the small ball problem for Gaussian measures , 1993 .

[14]  Q. Shao,et al.  Small ball probabilities of Gaussian fields , 1995 .

[15]  M. Talagrand,et al.  New Gaussian estimates for enlarged balls , 1993 .

[16]  A. Garsia Combinatorial inequalities and smoothness of functions , 1976 .

[17]  B. Roynette,et al.  Some exact equivalents for the Brownian motion in Hölder norm , 1992 .

[18]  A. Acosta Small Deviations in the Functional Central Limit Theorem with Applications to Functional Laws of the Iterated Logarithm , 1983 .

[19]  H. Rootzén,et al.  Small values of Gaussian processes and functional laws of the iterated logarithm , 1995 .

[20]  M. Talagrand,et al.  Lim Inf Results for Gaussian Samples and Chung's Functional LIL , 1994 .