Inversion of seismic refraction data using genetic algorithms

The use of genetic algorithms in geophysical inverse problems is a relatively recent development and offers many advantages in dealing with the nonlinearity inherent in such applications. However, in their application to specific problems, as with all algorithms, problems of implementation arise. After extensive numerical tests, we implemented a genetic algorithm to efficiently invert several sets of synthetic seismic refraction data. In particular, we aimed at overcoming one of the main problems in the application of genetic algorithms to geophysical problems: i.e., high dimensionality. The addition of a pseudo-subspace method to the genetic algorithm, whereby the complexity and dimensionality of a problem is progressively increased during the inversion, improves the convergence of the process. The method allows the region of the solution space containing the global minimum to be quickly found. The use of local optimization methods at the last stage of the search further improves the quality of the inversion. The genetic algorithm has been tested on a field data set to determine the structure and base of the weathered layer (regolith) overlaying a basement of granite and greenstones in an Archaean terrain of Western Australia.

[1]  D. J. Cavicchio,et al.  Adaptive search using simulated evolution , 1970 .

[2]  H. Zimmermann Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .

[3]  P. Williamson,et al.  Tomographic Inversion In Reflection Seismology , 1990 .

[4]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  B. Kennett,et al.  Subspace methods for large inverse problems with multiple parameter classes , 1988 .

[7]  William H. Press,et al.  Numerical recipes , 1990 .

[8]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[9]  Mrinal K. Sen,et al.  Nonlinear multiparameter optimization using genetic algorithms; inversion of plane-wave seismograms , 1991 .

[10]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[11]  M. Dentith,et al.  Exploration for gold-bearing iron formation in the Burbidge area of the Southern Cross Greenstone Belt, W.A. , 1992 .

[12]  Kennetb A. De Genetic Algorithms Are NOT Function Optimizers , 1992 .

[13]  Kenneth A. De Jong,et al.  Genetic Algorithms are NOT Function Optimizers , 1992, FOGA.

[14]  Mrinal K. Sen,et al.  Rapid sampling of model space using genetic algorithms: examples from seismic waveform inversion , 1992 .

[15]  D. Oldenburg,et al.  Generalized subspace methods for large-scale inverse problems , 1993 .

[16]  Side Jin,et al.  Background velocity inversion with a genetic algorithm , 1993 .

[17]  Eiichi Asakawa,et al.  Seismic ray tracing using linear traveltime interpolation , 1993 .

[18]  Art Raiche,et al.  Modelling and inversion -progress, problems, and challenges , 1994 .

[19]  Malcolm Sambridge,et al.  Hypocentre location: genetic algorithms incorporating problem- specific information , 1994 .

[20]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[21]  F. Boschetti,et al.  A staged genetic algorithm for tomographic inversion of seismic refraction data , 1995 .