EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components.

Several laboratories around the world have recently started to investigate EEG-based brain computer interface (BCI) systems in order to create a new communication channel for subjects with severe motor impairments. The present paper describes an initial evaluation of 64-channel EEG data recorded while subjects used one EEG channel over the left sensorimotor area to control on-line vertical cursor movement. Targets were given at the top or bottom of a computer screen. Data from 3 subjects in the early stages of training were analyzed by calculating band power time courses and maps for top and bottom targets separately. In addition, the Distinction Sensitive Learning Vector Quantizer (DSLVQ) was applied to single-trial EEG data. It was found that for each subject there exist optimal electrode positions and frequency components for on-line EEG-based cursor control.