暂无分享,去创建一个
[1] Sariel Har-Peled. Geometric Approximation Algorithms , 2011 .
[2] David L. Millman,et al. Computing planar Voronoi diagrams in double precision: a further example of degree-driven algorithm design , 2010, SoCG '10.
[3] Jean-Daniel Boissonnat,et al. The Simplex Tree: An Efficient Data Structure for General Simplicial Complexes , 2012, Algorithmica.
[4] Vin de Silva,et al. A weak characterisation of the Delaunay triangulation , 2008 .
[5] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[6] Steve Oudot,et al. Only distances are required to reconstruct submanifolds , 2014, Comput. Geom..
[7] Gunnar E. Carlsson,et al. Topological estimation using witness complexes , 2004, PBG.
[8] Jean-Daniel Boissonnat,et al. The stability of Delaunay Triangulations , 2013, Int. J. Comput. Geom. Appl..
[9] Markus Gross,et al. Point-Based Graphics , 2007 .
[10] Kurt Mehlhorn,et al. Algorithms for Complex Shapes with Certified Numerics and Topology Controlled Perturbation for Delaunay Triangulations , 2022 .
[11] Geometriae Dedicata,et al. Geometriae Dedicata , 2003 .
[12] Jean-Daniel Boissonnat,et al. Delaunay stability via perturbations , 2014, Int. J. Comput. Geom. Appl..
[13] Herbert Edelsbrunner,et al. Weak witnesses for Delaunay triangulations of submanifolds , 2007, Symposium on Solid and Physical Modeling.
[14] Leonidas J. Guibas,et al. Epsilon geometry: building robust algorithms from imprecise computations , 1989, SCG '89.
[15] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[16] Dan Halperin,et al. Controlled Perturbation for Certified Geometric Computing with Fixed-Precision Arithmetic , 2010, ICMS.