Self-Supervision with Superpixels: Training Few-shot Medical Image Segmentation without Annotation

[1]  Andreas Nürnberger,et al.  CHAOS Challenge - Combined (CT-MR) Healthy Abdominal Organ Segmentation , 2020, Medical Image Anal..

[2]  Daniel Rueckert,et al.  Realistic Adversarial Data Augmentation for MR Image Segmentation , 2020, MICCAI.

[3]  Xiao Chen,et al.  FOAL: Fast Online Adaptive Learning for Cardiac Motion Estimation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Kaiming He,et al.  Improved Baselines with Momentum Contrastive Learning , 2020, ArXiv.

[5]  Jinlu Liu,et al.  Prototype Refinement Network for Few-Shot Segmentation , 2020, ArXiv.

[6]  Martin Jägersand,et al.  Weakly Supervised Few-shot Object Segmentation using Co-Attention with Visual and Semantic Embeddings , 2020, IJCAI.

[7]  Boris N. Oreshkin,et al.  Weakly Supervised Few-shot Object Segmentation using Co-Attention with Visual and Semantic Inputs , 2020, ArXiv.

[8]  Yinghuan Shi,et al.  Differentiable Meta-learning Model for Few-shot Semantic Segmentation , 2019, AAAI.

[9]  Ross B. Girshick,et al.  Momentum Contrast for Unsupervised Visual Representation Learning , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Nassir Navab,et al.  'Squeeze & Excite' Guided Few-Shot Segmentation of Volumetric Images , 2019, Medical Image Anal..

[11]  Yi Yang,et al.  SG-One: Similarity Guidance Network for One-Shot Semantic Segmentation , 2018, IEEE Transactions on Cybernetics.

[12]  Liang Chen,et al.  Self-supervised learning for medical image analysis using image context restoration , 2019, Medical Image Anal..

[13]  Daniel C. Castro,et al.  Domain Generalization via Model-Agnostic Learning of Semantic Features , 2019, NeurIPS.

[14]  Martin Jägersand,et al.  AMP: Adaptive Masked Proxies for Few-Shot Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[15]  Cees Snoek,et al.  SILCO: Show a Few Images, Localize the Common Object , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[16]  Chi Zhang,et al.  Pyramid Graph Networks With Connection Attentions for Region-Based One-Shot Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[17]  Keiji Yanai,et al.  Self-Supervised Difference Detection for Weakly-Supervised Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[18]  Meta-Learning Initializations for Image Segmentation , 2019, ArXiv.

[19]  Nima Tajbakhsh,et al.  Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis , 2019, MICCAI.

[20]  Jiashi Feng,et al.  PANet: Few-Shot Image Semantic Segmentation With Prototype Alignment , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[21]  Gang Yu,et al.  Attention-Based Multi-Context Guiding for Few-Shot Semantic Segmentation , 2019, AAAI.

[22]  Konstantinos Kamnitsas,et al.  Data Efficient Unsupervised Domain Adaptation for Cross-Modality Image Segmentation , 2019, MICCAI.

[23]  Daniel Rueckert,et al.  Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction , 2019, MICCAI.

[24]  Patrick Pérez,et al.  Boosting Few-Shot Visual Learning With Self-Supervision , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[25]  R Devon Hjelm,et al.  Learning Representations by Maximizing Mutual Information Across Views , 2019, NeurIPS.

[26]  Timothy Lillicrap,et al.  Deep Compressed Sensing , 2019, ICML.

[27]  Xinlei Chen,et al.  Prior-Aware Neural Network for Partially-Supervised Multi-Organ Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[28]  Dahua Lin,et al.  Self-Supervised Learning via Conditional Motion Propagation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Rui Yao,et al.  CANet: Class-Agnostic Segmentation Networks With Iterative Refinement and Attentive Few-Shot Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Frédo Durand,et al.  Data augmentation using learned transforms for one-shot medical image segmentation , 2019, ArXiv.

[31]  Xu Ji,et al.  Invariant Information Clustering for Unsupervised Image Classification and Segmentation , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[32]  Xiahai Zhuang,et al.  Multivariate Mixture Model for Myocardial Segmentation Combining Multi-Source Images , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Klaus H. Maier-Hein,et al.  Abstract: nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation , 2019, Bildverarbeitung für die Medizin.

[34]  Jose Dolz,et al.  Few-shot 3D Multi-modal Medical Image Segmentation using Generative Adversarial Learning , 2018, ArXiv.

[35]  Klaus H. Maier-Hein,et al.  nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation , 2018, Bildverarbeitung für die Medizin.

[36]  Stella X. Yu,et al.  Unsupervised Feature Learning via Non-parametric Instance Discrimination , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[37]  Alexei A. Efros,et al.  Few-Shot Segmentation Propagation with Guided Networks , 2018, ArXiv.

[38]  Alexandre Lacoste,et al.  TADAM: Task dependent adaptive metric for improved few-shot learning , 2018, NeurIPS.

[39]  Leonidas J. Guibas,et al.  Taskonomy: Disentangling Task Transfer Learning , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[40]  Alexei A. Efros,et al.  Conditional Networks for Few-Shot Semantic Segmentation , 2018, ICLR.

[41]  Tao Xiang,et al.  Learning to Compare: Relation Network for Few-Shot Learning , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[42]  Joan Bruna,et al.  Few-Shot Learning with Graph Neural Networks , 2017, ICLR.

[43]  Gang Sun,et al.  Squeeze-and-Excitation Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[44]  Max Welling,et al.  Modeling Relational Data with Graph Convolutional Networks , 2017, ESWC.

[45]  Bastian Leibe,et al.  Superpixels: An evaluation of the state-of-the-art , 2016, Comput. Vis. Image Underst..

[46]  Eric P. Xing,et al.  Few-Shot Semantic Segmentation with Prototype Learning , 2018, BMVC.

[47]  Byron Boots,et al.  One-Shot Learning for Semantic Segmentation , 2017, BMVC.

[48]  Andrew Zisserman,et al.  Multi-task Self-Supervised Visual Learning , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[49]  Andrew Zisserman,et al.  Self-supervised Learning for Spinal MRIs , 2017, DLMIA/ML-CDS@MICCAI.

[50]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[51]  Richard S. Zemel,et al.  Prototypical Networks for Few-shot Learning , 2017, NIPS.

[52]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[53]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[54]  Oriol Vinyals,et al.  Matching Networks for One Shot Learning , 2016, NIPS.

[55]  Alexei A. Efros,et al.  Context Encoders: Feature Learning by Inpainting , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Paolo Favaro,et al.  Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles , 2016, ECCV.

[57]  Alexei A. Efros,et al.  Colorful Image Colorization , 2016, ECCV.

[58]  Gregory Shakhnarovich,et al.  Learning Representations for Automatic Colorization , 2016, ECCV.

[59]  Hoo-Chang Hoo-Chang Shin Shin,et al.  Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning , 2016, Ieee Transactions on Medical Imaging.

[60]  Ronald M. Summers,et al.  Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning , 2016, IEEE Transactions on Medical Imaging.

[61]  Alexei A. Efros,et al.  Unsupervised Visual Representation Learning by Context Prediction , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[62]  Thomas Brox,et al.  Discriminative Unsupervised Feature Learning with Convolutional Neural Networks , 2014, NIPS.

[63]  P. Matthews,et al.  Imaging in population science: cardiovascular magnetic resonance in 100,000 participants of UK Biobank - rationale, challenges and approaches , 2013, Journal of Cardiovascular Magnetic Resonance.

[64]  Rama Chellappa,et al.  Entropy rate superpixel segmentation , 2011, CVPR 2011.

[65]  Daoqiang Zhang,et al.  Multimodal classification of Alzheimer's disease and mild cognitive impairment , 2011, NeuroImage.

[66]  Joshua B. Tenenbaum,et al.  One shot learning of simple visual concepts , 2011, CogSci.

[67]  Habib Zaidi,et al.  PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[68]  Neeraj Sharma,et al.  Automated medical image segmentation techniques , 2010, Journal of medical physics.

[69]  S. Süsstrunk,et al.  SLIC Superpixels ? , 2010 .

[70]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[71]  Sasa Mutic,et al.  Concurrent multimodality image segmentation by active contours for radiotherapy treatment planninga). , 2007, Medical physics.

[72]  Sasa Mutic,et al.  Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. , 2007, Medical physics.

[73]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[74]  Sebastian Thrun,et al.  Adaptive Road Following using Self-Supervised Learning and Reverse Optical Flow , 2005, Robotics: Science and Systems.

[75]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[76]  Jitendra Malik,et al.  Learning a classification model for segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[77]  A Hofman,et al.  Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study , 2001, Journal of neurology, neurosurgery, and psychiatry.

[78]  J M Wardlaw,et al.  Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study: the Rotterdam Scan Study , 2001, Journal of neurology, neurosurgery, and psychiatry.

[79]  Jerry L Prince,et al.  Current methods in medical image segmentation. , 2000, Annual review of biomedical engineering.

[80]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .