Computing average shaped tissue probability templates

This note presents a framework for generating tissue probability maps that represent the average shape of a number of subjects' brain images. The procedure is formulated as finding maximum a posteriori estimates within a probabilistic generative model. Estimating the parameters involves alternating between estimating the deformations that match tissue class images of individual subjects to template, and updating the template according to the latest estimates of the deformations. A multinomial matching criterion is used, such that multiple tissue class images (e.g. grey and white matter) are registered simultaneously with the current template estimate. In order to generalise the resulting template to a broader range of subjects, a template blurriness prior is included within the model.

[1]  David Barber,et al.  Bayesian Classification With Gaussian Processes , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Ali R. Khan,et al.  Computing an average anatomical atlas using LDDMM and geodesic shooting , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[3]  Gary E. Christensen,et al.  Synthesizing average 3D anatomical shapes , 2006, NeuroImage.

[4]  W. Eric L. Grimson,et al.  Logarithm Odds Maps for Shape Representation , 2006, MICCAI.

[5]  David J. C. MacKay,et al.  Bayesian Comparison of Models for Images , 1996 .

[6]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[7]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[8]  Karl J. Friston,et al.  High-Dimensional Image Registration Using Symmetric Priors , 1999, NeuroImage.

[9]  G. Golub,et al.  Some large-scale matrix computation problems , 1996 .

[10]  C Davatzikos,et al.  Mapping image data to stereotaxic spaces: Applications to brain mapping , 1998, Human brain mapping.

[11]  David J. C. MacKay,et al.  Comparison of Approximate Methods for Handling Hyperparameters , 1999, Neural Computation.

[12]  D. Harville Maximum Likelihood Approaches to Variance Component Estimation and to Related Problems , 1977 .

[13]  Peter Lorenzen,et al.  Multi-class Posterior Atlas Formation via Unbiased Kullback-Leibler Template Estimation , 2004, MICCAI.

[14]  Karl J. Friston,et al.  Bayesian fMRI time series analysis with spatial priors , 2005, NeuroImage.

[15]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[16]  Mert R. Sabuncu,et al.  Effects of Registration Regularization and Atlas Sharpness on Segmentation Accuracy , 2007, MICCAI.

[17]  Peter Lorenzen,et al.  Large deformation minimum mean squared error template estimation for computational anatomy , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[18]  William H. Press,et al.  Numerical recipes in C , 2002 .

[19]  Y. Amit,et al.  Towards a coherent statistical framework for dense deformable template estimation , 2007 .

[20]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[21]  Simon K. Warfield,et al.  : Multi-subject Registration for Unbiased Statistical Atlas Construction , 2004, MICCAI.

[22]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[23]  Paul A. Viola,et al.  Learning from one example through shared densities on transforms , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[24]  Simon R. Arridge,et al.  A survey of hierarchical non-linear medical image registration , 1999, Pattern Recognit..

[25]  David J. C. MacKay,et al.  The Evidence Framework Applied to Classification Networks , 1992, Neural Computation.

[26]  Alain Trouvé,et al.  Bayesian template estimation in computational anatomy , 2008, NeuroImage.

[27]  Karl J. Friston,et al.  High-Dimensional Nonlinear Image Registration , 1998, NeuroImage.

[28]  Erik G. Learned-Miller,et al.  Data driven image models through continuous joint alignment , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.