Stress Testing Engineering: the real risk measurement?

Stress testing is used to determine the stability or the resilience of a given financial institution by deliberately submitting. In this paper, we focus on what may lead a bank to fail and how its resilience can be measured. Two families of triggers are analysed: the first stands in the stands in the impact of external (and / or extreme) events, the second one stands on the impacts of the choice of inadequate models for predictions or risks measurement; more precisely on models becoming inadequate with time because of not being sufficiently flexible to adapt themselves to dynamical changes.

[1]  H. Joe Asymptotic efficiency of the two-stage estimation method for copula-based models , 2005 .

[2]  Matthew T. Jones,et al.  Stress Testing of Financial Systems: An Overview of Issues, Methodologies, and Fsap Experiences , 2001, SSRN Electronic Journal.

[3]  Jarmo Pesola Financial Fragility, Macroeconomic Shocks and Banks' Loan Losses: Evidence from Europe , 2007 .

[4]  Roger B. Nelsen,et al.  Robust Fits for Copula Models , 2007, Commun. Stat. Simul. Comput..

[5]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[6]  Claudia Czado,et al.  Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..

[7]  Bertrand K. Hassani,et al.  Emerging Countries Sovereign Rating Adjustment using Market Information: Impact on Financial Institutions Investment Decisions , 2013 .

[8]  D. Tasche,et al.  On the coherence of expected shortfall , 2001, cond-mat/0104295.

[9]  Dominique Guegan,et al.  An Econometric Study of Vine Copulas , 2010 .

[10]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[11]  C. Genest,et al.  Bivariate Distributions with Given Extreme Value Attractor , 2000 .

[12]  Jon Gregory Counterparty Credit Risk and Credit Value Adjustment: A Continuing Challenge for Global Financial Markets , 2012 .

[13]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[14]  O. Barndorff-Nielsen,et al.  Infinite divisibility of the hyperbolic and generalized inverse Gaussian distributions , 1977 .

[15]  F. Delbaen Coherent risk measures , 2000 .

[16]  R. C. Merton,et al.  On the Pricing of Corporate Debt: The Risk Structure of Interest Rates , 1974, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[17]  Richard A. Davis,et al.  Simple consistent estimation of the coefficients of a linear filter , 1988 .

[18]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[19]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[20]  Bertrand Hassani,et al.  Multivariate VaRs for operational risk capital computation: a vine structure approach , 2011 .

[21]  P. Dent The Black Swan: The Impact of the Highly Improbable (2nd edition) , 2010 .

[22]  Bertrand K. Hassani,et al.  Operational risk: a Basel II++ step before Basel III , 2012 .

[23]  Jeremy Berkowitz,et al.  A Coherent Framework for Stress-Testing , 1999 .

[24]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[25]  Shaun S. Wang A CLASS OF DISTORTION OPERATORS FOR PRICING FINANCIAL AND INSURANCE RISKS , 2000 .

[26]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[27]  Bertrand K. Hassani,et al.  An efficient threshold choice for operational risk capital computation , 2010 .

[28]  J. C. Rodríguez,et al.  Measuring financial contagion:a copula approach , 2007 .

[29]  J. Huston McCulloch,et al.  ON THE PARAMETRIZATION OF THE AFOCAL STABLE DISTRIBUTIONS , 1996 .

[30]  Karl Pearson F.R.S. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling , 2009 .

[31]  D. Dickey,et al.  Testing for unit roots in autoregressive-moving average models of unknown order , 1984 .

[32]  Kenneth J. Koehler,et al.  Constructing multivariate distributions with specific marginal distributions , 1995 .

[33]  K. Pearson On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from Random Sampling , 1900 .

[34]  Dominique Guegan,et al.  New Prospects on Vines , 2008 .

[35]  Bertrand K. Hassani,et al.  A modified Panjer algorithm for operational risk capital calculations , 2009 .

[36]  Bertrand K. Hassani,et al.  A Mathematical Resurgence of Risk Management: An Extreme Modeling of Expert Opinions , 2011 .

[37]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[38]  K. Aas,et al.  Models for construction of multivariate dependence – a comparison study , 2009 .

[39]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[40]  Malcolm R Leadbetter,et al.  Extremes and local dependence in stationary sequences , 1983 .

[41]  K. Knight Stable Non-Gaussian Random Processes Gennady Samorodnitsky and Murad S. Taqqu Chapman and Hall, 1994 , 1997, Econometric Theory.

[42]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[43]  Roger M. Cooke,et al.  Probability Density Decomposition for Conditionally Dependent Random Variables Modeled by Vines , 2001, Annals of Mathematics and Artificial Intelligence.

[44]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[45]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[46]  Bertrand K. Hassani,et al.  Using a time series approach to correct serial correlation in Operational Risk capital calculation , 2012 .

[47]  Dominique Guégan,et al.  How can we Define the Concept of Long Memory? An Econometric Survey , 2005 .

[48]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[49]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[50]  Alexis Renaudin,et al.  The Cascade Bayesian Approach for a controlled integration of internal data, external data and scenarios , 2013 .

[51]  T. Klett,et al.  A g-and-h Copula Approach to Risk Measurement in Multivariate Financial Models , 2010 .

[52]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[53]  Bertrand K. Hassani,et al.  Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions , 2015 .

[54]  Angel R. Martinez,et al.  Computational Statistics Handbook with MATLAB, Second Edition (Chapman & Hall/Crc Computer Science & Data Analysis) , 2007 .

[55]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[56]  Stoyan V. Stoyanov,et al.  Distortion Risk Measures in Portfolio Optimization , 2010 .

[57]  Kjersti Aas,et al.  Truncated regular vines in high dimensions , 2010 .

[58]  Note on New Prospects on Vines , 2008 .

[59]  Daniel Berg Copula goodness-of-fit testing: an overview and power comparison , 2009 .

[60]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[61]  Mario Quagliariello,et al.  Stress Testing the Banking System: Methodologies and Applications , 2009 .

[62]  Dawn Hunter Operational risk quantification using extreme value theory and copulas: from theory to practice , 2009 .