The logarithmic contributions to the $$O(\alpha _s^3)$$O(αs3) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering

We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region $$Q^2 \gg m^2$$Q2≫m2 to 3-loop order in the fixed flavor number scheme and present the corresponding expressions for the massive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given in Mellin $$N$$N-space.

[1]  P. Jimenez-Delgado,et al.  Delineating parton distributions and the strong coupling , 2014, 1403.1852.

[2]  J. Blumlein,et al.  The O(αs2) heavy quark corrections to charged current deep-inelastic scattering at large virtualities , 2014, 1401.4352.

[3]  Anomalous dimension of non-singlet Wilson operators at O(1Nf in deep inelastic scattering , 1994, hep-ph/9401214.

[4]  Z. A. Ibrahim,et al.  Measurement of charm and beauty production in deep inelastic ep scattering from decays into muons at , 2009 .

[5]  J. Leveille,et al.  Characteristics of heavy quark leptoproduction in QCD , 1979 .

[6]  Calculation of Massive 2-Loop Operator Matrix Elements with Outer Gluon Lines , 2007, hep-ph/0702265.

[7]  Carsten Schneider,et al.  Simplifying Multiple Sums in Difference Fields , 2013, ArXiv.

[8]  J. G. Contreras,et al.  Measurement of beauty production at HERA using events with muons and jets , 2005 .

[9]  J. Blumlein,et al.  O(alpha(s)**2) and O(alpha(s)**3) Heavy Flavor Contributions to Transversity at Q**2 >>m**2 , 2009, 0909.1547.

[10]  Johannes Blümlein,et al.  Structural relations of harmonic sums and Mellin transforms up to weight w=5 , 2009, Comput. Phys. Commun..

[11]  S. Moch,et al.  O ( a s ) heavy flavor corrections to charged current deep inelastic scattering in Mellin space , 2011, 1104.3449.

[12]  W. L. van Neerven,et al.  Heavy quark coefficient functions at asymptotic values Q2>>m2 , 1996, hep-ph/9601302.

[13]  J. G. Contreras,et al.  Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA , 2009, 0907.2643.

[14]  J.A.M. Vermaseren,et al.  The 3-loop QCD calculation of the moments of deep inelastic structure functions , 1996, hep-ph/9605317.

[15]  Lucy Joan Slater,et al.  Generalized hypergeometric functions , 1966 .

[16]  Z. A. Ibrahim,et al.  Combined measurement and QCD analysis of the inclusive e±p scattering cross sections at HERA , 2009 .

[17]  A. Retey,et al.  Some higher moments of deep inelastic structure functions at next-to-next-to-leading order of perturbative QCD , 2001 .

[18]  Carsten Schneider,et al.  A new Sigma approach to multi-summation , 2005, Adv. Appl. Math..

[19]  Johannes Blumlein,et al.  Analytic Continuation of the Harmonic Sums for the 3-Loop Anomalous Dimensions , 2005 .

[20]  Vladimir V. Bytev,et al.  Differential reduction of generalized hypergeometric functions from Feynman diagrams: One-variable case , 2009, 0904.0214.

[21]  T. V. Ritbergen,et al.  The next-next-to-leading QCD approximation for non-singlet moments of deep inelastic structure functions , 1994 .

[22]  Monaco,et al.  Measurement of beauty production in deep inelastic scattering at HERA , 2004, hep-ex/0405069.

[23]  G. Ingelman,et al.  Characteristics of heavy flavour production inep collisions , 1988 .

[24]  V. Cerný,et al.  Measurement of charm and beauty dijet cross sections in photoproduction at HERA using the H1 vertex detector , 2006, hep-ex/0605016.

[25]  Johannes Blümlein,et al.  3-, 4-, and 5-flavor next-to-next-to-leading order parton distribution functions from deep-inelastic-scattering data and at hadron colliders , 2010 .

[26]  A. Vogt,et al.  The Three-loop splitting functions in QCD: The Singlet case , 2004, hep-ph/0404111.

[27]  C. Schneider,et al.  The O(αs3) massive operator matrix elements of O(nf) for the structure function F2(x,Q2) and transversity , 2010, Nuclear physics. B.

[28]  A. Martin,et al.  Parton distributions for the LHC , 2009, 0901.0002.

[29]  J. Smith,et al.  Complete O(αS) corrections to heavy-flavour structure functions in electroproduction , 1993 .

[30]  J. Ablinger,et al.  Modern Summation Methods and the Computation of 2- and 3-loop Feynman Diagrams , 2010, 1006.4797.

[31]  J.A.M. Vermaseren,et al.  The 16th moment of the non-singlet structure functions $F_2(x,Q^2)$ and $F_L(x,Q^2)$ to $O$($\alpha^3_S$) , 2004, hep-ph/0411111.

[32]  A. Vogt,et al.  On the next-to-next-to leading order QCD corrections to heavy-quark production in deep-inelastic scattering , 2012, 1205.5727.

[33]  Michael Karr,et al.  Summation in Finite Terms , 1981, JACM.

[34]  Johannes Blumlein,et al.  Two-Loop Massive Operator Matrix Elements and Unpolarized Heavy Flavor Production at Asymptotic Values Q^2 >> m^2 , 2007 .

[35]  S. Wolfram,et al.  Quantum-chromodynamic estimates for heavy-particle production , 1978 .

[36]  P. Jimenez-Delgado,et al.  Dynamical next-to-next-to-leading order parton distributions , 2009 .

[37]  Carsten Schneider,et al.  Product Representations in ΠΣ-Fields , 2005 .

[38]  A. Vainshtein,et al.  Remarks on charm electroproduction in quantum chromodynamics , 1978 .

[39]  S. Bethke,et al.  O ct 2 01 1 Workshop on Precision Measurements of α s MPI , 2011 .

[40]  J. Blumlein,et al.  The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function F2(x,Q2) and transversity , 2014, 1406.4654.

[41]  S. Moch,et al.  The ABM parton distributions tuned to LHC data , 2013, 1310.3059.

[42]  M. Glück,et al.  Scaling violations and the gluon distribution of the nucleon , 1982 .

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  Corrections to polarized heavy flavour production at Q^2 >> m^2 , 1996, hep-ph/9608342.

[45]  J. Huston,et al.  CT10 next-to-next-to-leading order global analysis of QCD , 2014 .

[46]  O(αs2) contributions to charm production in charged-current deep-inelastic lepton-hadron scattering , 1997, hep-ph/9702242.

[47]  S. Forte,et al.  Parton distributions with LHC data , 2012, 1207.1303.

[48]  Johannes Blumlein,et al.  Mellin representation for the heavy flavor contributions to deep inelastic structure functions , 2004 .

[49]  S. Moch,et al.  Parton Distribution Functions and Benchmark Cross Sections at NNLO , 2012, 1202.2281.

[50]  Carsten Schneider,et al.  Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials , 2011, ArXiv.

[51]  S. Kurth,et al.  Harmonic sums and Mellin transforms up to two-loop order , 1999 .

[52]  E. Witten Heavy Quark Contributions to Deep Inelastic Scattering , 1976 .

[53]  J. Blümlein,et al.  Higher twist contributions to the structure functions F 2 p (x ,Q 2 ) and F 2 d (x ,Q 2 ) at large x at higher orders , 2008 .

[54]  F. Zomer,et al.  A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector , 2012, 1206.2913.

[55]  J. Blumlein,et al.  The transition matrix element Agq(N) of the variable flavor number scheme at O(αs3) , 2014, 1402.0359.

[56]  Carsten Schneider,et al.  Solving parameterized linear difference equations in terms of indefinite nested sums and products , 2005 .

[57]  S. Moch,et al.  The third-order QCD corrections to deep-inelastic scattering by photon exchange , 2005, hep-ph/0504242.

[58]  S. Albino,et al.  Analytic continuation of harmonic sums , 2009, 0902.2148.

[59]  Godbole,et al.  Heavy flavor production at high energyep colliders , 1988 .

[60]  J. Smith,et al.  Charm electroproduction viewed in the variable-flavour number scheme versus fixed-order perturbation theory , 1996, hep-ph/9612398.

[61]  Manuel Kauers,et al.  Determining the closed forms of the O(sS3) anomalous dimensions and Wilson coefficients from Mellin moments by means of computer algebra , 2009, Comput. Phys. Commun..

[62]  W. N. Bailey,et al.  Generalized hypergeometric series , 1935 .

[63]  J. A. M. Vermaseren Harmonic sums, Mellin transforms and Integrals , 1999 .