The logarithmic contributions to the $$O(\alpha _s^3)$$O(αs3) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering
暂无分享,去创建一个
I. Bierenbaum | J. Blümlein | J. Blümlein | S. Klein | F. Wißbrock | A. Behring | A. Freitas | A. Behring | A. Freitas | F. Wissbrock | S. Klein | I. Bierenbaum | A. D. Freitas
[1] P. Jimenez-Delgado,et al. Delineating parton distributions and the strong coupling , 2014, 1403.1852.
[2] J. Blumlein,et al. The O(αs2) heavy quark corrections to charged current deep-inelastic scattering at large virtualities , 2014, 1401.4352.
[3] Anomalous dimension of non-singlet Wilson operators at O(1Nf in deep inelastic scattering , 1994, hep-ph/9401214.
[4] Z. A. Ibrahim,et al. Measurement of charm and beauty production in deep inelastic ep scattering from decays into muons at , 2009 .
[5] J. Leveille,et al. Characteristics of heavy quark leptoproduction in QCD , 1979 .
[6] Calculation of Massive 2-Loop Operator Matrix Elements with Outer Gluon Lines , 2007, hep-ph/0702265.
[7] Carsten Schneider,et al. Simplifying Multiple Sums in Difference Fields , 2013, ArXiv.
[8] J. G. Contreras,et al. Measurement of beauty production at HERA using events with muons and jets , 2005 .
[9] J. Blumlein,et al. O(alpha(s)**2) and O(alpha(s)**3) Heavy Flavor Contributions to Transversity at Q**2 >>m**2 , 2009, 0909.1547.
[10] Johannes Blümlein,et al. Structural relations of harmonic sums and Mellin transforms up to weight w=5 , 2009, Comput. Phys. Commun..
[11] S. Moch,et al. O ( a s ) heavy flavor corrections to charged current deep inelastic scattering in Mellin space , 2011, 1104.3449.
[12] W. L. van Neerven,et al. Heavy quark coefficient functions at asymptotic values Q2>>m2 , 1996, hep-ph/9601302.
[13] J. G. Contreras,et al. Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA , 2009, 0907.2643.
[14] J.A.M. Vermaseren,et al. The 3-loop QCD calculation of the moments of deep inelastic structure functions , 1996, hep-ph/9605317.
[15] Lucy Joan Slater,et al. Generalized hypergeometric functions , 1966 .
[16] Z. A. Ibrahim,et al. Combined measurement and QCD analysis of the inclusive e±p scattering cross sections at HERA , 2009 .
[17] A. Retey,et al. Some higher moments of deep inelastic structure functions at next-to-next-to-leading order of perturbative QCD , 2001 .
[18] Carsten Schneider,et al. A new Sigma approach to multi-summation , 2005, Adv. Appl. Math..
[19] Johannes Blumlein,et al. Analytic Continuation of the Harmonic Sums for the 3-Loop Anomalous Dimensions , 2005 .
[20] Vladimir V. Bytev,et al. Differential reduction of generalized hypergeometric functions from Feynman diagrams: One-variable case , 2009, 0904.0214.
[21] T. V. Ritbergen,et al. The next-next-to-leading QCD approximation for non-singlet moments of deep inelastic structure functions , 1994 .
[22] Monaco,et al. Measurement of beauty production in deep inelastic scattering at HERA , 2004, hep-ex/0405069.
[23] G. Ingelman,et al. Characteristics of heavy flavour production inep collisions , 1988 .
[24] V. Cerný,et al. Measurement of charm and beauty dijet cross sections in photoproduction at HERA using the H1 vertex detector , 2006, hep-ex/0605016.
[25] Johannes Blümlein,et al. 3-, 4-, and 5-flavor next-to-next-to-leading order parton distribution functions from deep-inelastic-scattering data and at hadron colliders , 2010 .
[26] A. Vogt,et al. The Three-loop splitting functions in QCD: The Singlet case , 2004, hep-ph/0404111.
[27] C. Schneider,et al. The O(αs3) massive operator matrix elements of O(nf) for the structure function F2(x,Q2) and transversity , 2010, Nuclear physics. B.
[28] A. Martin,et al. Parton distributions for the LHC , 2009, 0901.0002.
[29] J. Smith,et al. Complete O(αS) corrections to heavy-flavour structure functions in electroproduction , 1993 .
[30] J. Ablinger,et al. Modern Summation Methods and the Computation of 2- and 3-loop Feynman Diagrams , 2010, 1006.4797.
[31] J.A.M. Vermaseren,et al. The 16th moment of the non-singlet structure functions $F_2(x,Q^2)$ and $F_L(x,Q^2)$ to $O$($\alpha^3_S$) , 2004, hep-ph/0411111.
[32] A. Vogt,et al. On the next-to-next-to leading order QCD corrections to heavy-quark production in deep-inelastic scattering , 2012, 1205.5727.
[33] Michael Karr,et al. Summation in Finite Terms , 1981, JACM.
[34] Johannes Blumlein,et al. Two-Loop Massive Operator Matrix Elements and Unpolarized Heavy Flavor Production at Asymptotic Values Q^2 >> m^2 , 2007 .
[35] S. Wolfram,et al. Quantum-chromodynamic estimates for heavy-particle production , 1978 .
[36] P. Jimenez-Delgado,et al. Dynamical next-to-next-to-leading order parton distributions , 2009 .
[37] Carsten Schneider,et al. Product Representations in ΠΣ-Fields , 2005 .
[38] A. Vainshtein,et al. Remarks on charm electroproduction in quantum chromodynamics , 1978 .
[39] S. Bethke,et al. O ct 2 01 1 Workshop on Precision Measurements of α s MPI , 2011 .
[40] J. Blumlein,et al. The 3-loop non-singlet heavy flavor contributions and anomalous dimensions for the structure function F2(x,Q2) and transversity , 2014, 1406.4654.
[41] S. Moch,et al. The ABM parton distributions tuned to LHC data , 2013, 1310.3059.
[42] M. Glück,et al. Scaling violations and the gluon distribution of the nucleon , 1982 .
[43] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[44] Corrections to polarized heavy flavour production at Q^2 >> m^2 , 1996, hep-ph/9608342.
[45] J. Huston,et al. CT10 next-to-next-to-leading order global analysis of QCD , 2014 .
[46] O(αs2) contributions to charm production in charged-current deep-inelastic lepton-hadron scattering , 1997, hep-ph/9702242.
[47] S. Forte,et al. Parton distributions with LHC data , 2012, 1207.1303.
[48] Johannes Blumlein,et al. Mellin representation for the heavy flavor contributions to deep inelastic structure functions , 2004 .
[49] S. Moch,et al. Parton Distribution Functions and Benchmark Cross Sections at NNLO , 2012, 1202.2281.
[50] Carsten Schneider,et al. Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials , 2011, ArXiv.
[51] S. Kurth,et al. Harmonic sums and Mellin transforms up to two-loop order , 1999 .
[52] E. Witten. Heavy Quark Contributions to Deep Inelastic Scattering , 1976 .
[53] J. Blümlein,et al. Higher twist contributions to the structure functions F 2 p (x ,Q 2 ) and F 2 d (x ,Q 2 ) at large x at higher orders , 2008 .
[54] F. Zomer,et al. A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector , 2012, 1206.2913.
[55] J. Blumlein,et al. The transition matrix element Agq(N) of the variable flavor number scheme at O(αs3) , 2014, 1402.0359.
[56] Carsten Schneider,et al. Solving parameterized linear difference equations in terms of indefinite nested sums and products , 2005 .
[57] S. Moch,et al. The third-order QCD corrections to deep-inelastic scattering by photon exchange , 2005, hep-ph/0504242.
[58] S. Albino,et al. Analytic continuation of harmonic sums , 2009, 0902.2148.
[59] Godbole,et al. Heavy flavor production at high energyep colliders , 1988 .
[60] J. Smith,et al. Charm electroproduction viewed in the variable-flavour number scheme versus fixed-order perturbation theory , 1996, hep-ph/9612398.
[61] Manuel Kauers,et al. Determining the closed forms of the O(sS3) anomalous dimensions and Wilson coefficients from Mellin moments by means of computer algebra , 2009, Comput. Phys. Commun..
[62] W. N. Bailey,et al. Generalized hypergeometric series , 1935 .
[63] J. A. M. Vermaseren. Harmonic sums, Mellin transforms and Integrals , 1999 .