Effects of mixed mode I/II loading and grain orientation on crack initiation and stable tearing in 2024-T3 aluminum
暂无分享,去创建一个
The effects of material grain orientation and mixed mode I/II loading on crack initiation and stable tearing in 2.3-mm-thick, unclad 2024-T3 aluminum is experimentally investigated. Mode I experiments were performed on center-cracked specimens with the crack being oriented at various angles relative to the rolling direction. Defining {theta} to be the angle between the normal to the initial crack plane and the loading direction, Mode I/II experiments were performed using an Arcan test fixture for 0{degree} {le} {theta} {le} 90{degree} [corresponding to 90{degree} {ge} {beta} {ge} 0{degree}, where {beta} = atan (K{sub II}/K{sub I})] with the crack oriented either along the rolling direction (T-L) or perpendicular to the rolling direction (L-T). Results indicate that: 1. The Mode I crack tip opening displacement (CTOD) is a strong function of the orientation of the crack relative to the rolling direction; CTOD for a T-L specimen is 0.84 mm, increasing linearly with orientation angle to 1.05 mm for an L-T case. 2. The Mode I/II CTOD increases rapidly during initial increments of crack growth and then decreases towards a constant value as crack growth continues. 3. For {theta} 29{degree}), all cracks kinked and the Mode I/II plastic zones aremore » similar to rotated Mode I plastic zones throughout the crack growth process. 4. J{sub II} = 0 reasonably predicts the direction of tension-dominated crack growth, but does not predict the transition to shear crack growth which occurs for {theta} {ge} 75{degree}. 5. K{sub II} {ge} K{sub I} for {theta} {approx} 58{degree} ({beta} = 45{degree}) does not quantitatively predict the transition to shear crack growth for {theta} {ge} 75{degree} ({beta} {le} 22{degree}), but does provide an indication of changing conditions in the crack tip region.« less