Binary construction of quantum codes of minimum distances five and six

In this paper, we construct a large number of good quantum codes of minimum distances five and six by Steane's Construction. Our methods involve the study of the check matrices of binary extended BCH-codes, together with puncturing and combining such matrices.

[1]  Hao Chen Some good quantum error-correcting codes from algebraic-Geometric codes , 2001, IEEE Trans. Inf. Theory.

[2]  Andrew M. Steane Quantum Reed-Muller codes , 1999, IEEE Trans. Inf. Theory.

[3]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[4]  S. Litsyn,et al.  Asymptotically Good Quantum Codes , 2000, quant-ph/0006061.

[5]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[6]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[7]  Daniel Gottesman Pasting Quantum Codes , 1996 .

[8]  T. Beth,et al.  Quantum BCH Codes , 1999, quant-ph/9910060.

[9]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[10]  D. Gottesman An Introduction to Quantum Error Correction , 2000, quant-ph/0004072.

[11]  N. J. A. Sloane,et al.  New binary codes , 1972, IEEE Trans. Inf. Theory.

[12]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[13]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[14]  Hao Chen,et al.  Quantum codes from concatenated algebraic-geometric codes , 2005, IEEE Transactions on Information Theory.

[15]  Gérard D. Cohen,et al.  On binary constructions of quantum codes , 1999, IEEE Trans. Inf. Theory.

[16]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[17]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[18]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[19]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[20]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[21]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.