Robust Feedback-Linearizing Output Voltage Regulator for DC/DC Boost Converter

This paper suggests a cascade output voltage regulation strategy for dc/dc boost converters that embeds a robust inner-loop current controller against parameter variations. The contributions of this paper are divided into two parts. The first contribution is to present a simple and robust inner-loop current controller despite parameter uncertainties, guaranteeing the stability of the whole closed-loop system including the first-order internal dynamics. The second contribution is to show that an outer-loop proportional-integral regulator can stabilize the output voltage error without relying on any parameter information. Simulations and experiments using a 3-kW dc/dc boost converter showed that the proposed method offers satisfactory closed-loop performance in the presence of parameter uncertainties.

[1]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[2]  Abraham Pressman,et al.  Switching Power Supply Design , 1997 .

[3]  Romeo Ortega,et al.  Adaptive passivity‐based control of average dc‐to‐dc power converter models , 1998 .

[4]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[5]  Vadim I. Utkin,et al.  Sliding mode control in electromechanical systems , 1999 .

[6]  Stéphane Bibian,et al.  High performance predictive dead-beat digital controller for DC power supplies , 2001, APEC 2001. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No.01CH37181).

[7]  Robert W. Erickson,et al.  Fundamentals of Power Electronics , 2001 .

[8]  Tzann-Shin Lee,et al.  Input-output linearization and zero-dynamics control of three-phase AC/DC voltage-source converters , 2003 .

[9]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[10]  S. Saggini,et al.  Autotuning of Digitally Controlled DC–DC Converters Based on Relay Feedback , 2007, IEEE Transactions on Power Electronics.

[11]  Shu Wang,et al.  Explicit Model Predictive Control of DC–DC Switched-Mode Power Supplies With Extended Kalman Filtering , 2009, IEEE Transactions on Industrial Electronics.

[12]  Hossin Hosseinian,et al.  Power Electronics , 2020, 2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES).

[13]  D. Maksimović,et al.  Robust Gain-Scheduled Control of Switched-Mode DC–DC Converters , 2012, IEEE transactions on power electronics.

[14]  J.-T. Su,et al.  Gain scheduling control scheme for improved transient response of DC/DC converters , 2012 .

[15]  Jung-Su Kim,et al.  Output-feedback model predictive controller for voltage regulation of a DC/DC converter , 2013 .

[16]  Masahide Hojo,et al.  A Design of DC/DC Converter of Photovoltaic Generation System for Streetcars , 2013 .

[17]  P. Olver Nonlinear Systems , 2013 .

[18]  June-Seok Lee,et al.  Variable DC-Link Voltage Algorithm with a Wide Range of Maximum Power Point Tracking for a Two-String PV System , 2013 .

[19]  Said Oucheriah,et al.  PWM-Based Adaptive Sliding-Mode Control for Boost DC–DC Converters , 2013, IEEE Transactions on Industrial Electronics.

[20]  T. Mishima,et al.  Analysis, Design, and Performance Evaluations of an Edge-Resonant Switched Capacitor Cell-Assisted Soft-Switching PWM Boost DC–DC Converter and Its Interleaved Topology , 2013, IEEE Transactions on Power Electronics.

[21]  Adel Zakipour,et al.  Sliding mode control of the DC-DC flyback converter with zero steady-state error , 2013, 4th Annual International Power Electronics, Drive Systems and Technologies Conference.

[22]  Saïd Doubabi,et al.  DSP-Based Implementation of Fuzzy Output Tracking Control for a Boost Converter , 2014, IEEE Transactions on Industrial Electronics.

[23]  Fernando Lessa Tofoli,et al.  A Nonisolated DC–DC Boost Converter With High Voltage Gain and Balanced Output Voltage , 2014, IEEE Transactions on Industrial Electronics.

[24]  Jung-Su Kim,et al.  A Stabilizing Model Predictive Controller for Voltage Regulation of a DC/DC Boost Converter , 2014, IEEE Transactions on Control Systems Technology.

[25]  Qiaoling Tong,et al.  Sensorless Predictive Current Controlled DC–DC Converter With a Self-Correction Differential Current Observer , 2014, IEEE Transactions on Industrial Electronics.

[26]  Mario Huemer,et al.  Modeling, Control, and Implementation of DC–DC Converters for Variable Frequency Operation , 2014, IEEE Transactions on Power Electronics.

[27]  Young-Bae Kim,et al.  Robust Time-Delay Control for the DC–DC Boost Converter , 2014, IEEE Transactions on Industrial Electronics.

[28]  Tobias Geyer,et al.  Direct Voltage Control of DC–DC Boost Converters Using Enumeration-Based Model Predictive Control , 2014, IEEE Transactions on Power Electronics.

[29]  Luis Martinez-Salamero,et al.  Impedance Matching in Photovoltaic Systems Using Cascaded Boost Converters and Sliding-Mode Control , 2015, IEEE Transactions on Power Electronics.

[30]  Yan Xing,et al.  A Family of Soft-Switching DC–DC Converters Based on a Phase-Shift-Controlled Active Boost Rectifier , 2015, IEEE Transactions on Power Electronics.

[31]  K. K. Swamy A High Gain Input-Parallel Output-Series Dc / Dc Converter with Dual Coupled Inductors , 2015 .

[32]  J. Chae,et al.  A High-Efficiency DC–DC Boost Converter for a Miniaturized Microbial Fuel Cell , 2015, IEEE Transactions on Power Electronics.

[33]  José Marcos Alonso Alvarez,et al.  Large-Signal Characterization of Power Inductors in EV Bidirectional DC–DC Converters Focused on Core Size Optimization , 2015, IEEE Transactions on Industrial Electronics.

[34]  June-Seok Lee,et al.  Current Sensorless MPPT Control Method for Dual-Mode PV Module-Type Interleaved Flyback Inverters , 2015 .

[35]  Francisco Jurado,et al.  New topology for DC/DC bidirectional converter for hybrid systems in renewable energy , 2015 .