Poroelastic model-based time-lapse modeling of the Quest carbon storage project in Alberta
暂无分享,去创建一个
[1] A. Levander. Fourth-order finite-difference P-SV seismograms , 1988 .
[2] J. Carcione,et al. Computational poroelasticity — A review , 2010 .
[3] Q. H. Liu,et al. A staggered-grid finite-difference method with perfectly matched layers for poroelastic wave equations. , 2001, The Journal of the Acoustical Society of America.
[4] Xiuming Wang,et al. Modelling Seismic Wave Propagation in Heterogeneous Poroelastic Media Using a High‐Order Staggered Finite‐Difference Method , 2003 .
[5] José M. Carcione,et al. SOME ASPECTS OF THE PHYSICS AND NUMERICAL MODELING OF BIOT COMPRESSIONAL WAVES , 1995 .
[6] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[7] Nanxun Dai,et al. Wave propagation in heterogeneous, porous media: A velocity‐stress, finite‐difference method , 1995 .
[8] M. Biot. MECHANICS OF DEFORMATION AND ACOUSTIC PROPAGATION IN POROUS MEDIA , 1962 .
[9] Kagan Tuncay,et al. Parallel implementation of a velocity-stress staggered-grid finite-difference method for 2-D poroelastic wave propagation , 2006, Comput. Geosci..
[10] Velocity-stress finite-difference modeling of poroelastic wave propagation , 2013 .
[11] F. Gaßmann. Uber die Elastizitat poroser Medien. , 1961 .
[12] Qing Huo Liu,et al. PERFECTLY MATCHED LAYERS FOR ELASTODYNAMICS: A NEW ABSORBING BOUNDARY CONDITION , 1996 .
[13] C. Tsogka,et al. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .
[14] L. Bartel,et al. Velocity‐stress‐pressure algorithm for 3D poroelastic wave propagation , 2004 .
[15] G. McMechan,et al. Numerical simulation of seismic responses of poroelastic reservoirs using Biot theory , 1991 .