New results in signal processing and compression of polygon meshes

Polygon meshes, which are used in most graphics applications, require considerable amounts of storage, even when they only approximate precise shapes with limited accuracy. To support Internet access to 3D models of complex virtual environments or assemblies for electronic shopping, collaborative CAD, multi-player video games, and scientific visualization, representations of 3D shapes must be compressed by several orders of magnitude. Furthermore, several closely related methods have been proposed in recent years to smooth, de-noise, edit, compress, transmit, and animate very large polygon meshes, based on topological and combinatorial methods, signal processing techniques, constrained energy minimization, and the solution of diffusion differential equations. This is an overview of some of my recent results in this area: linear anisotropic mesh filtering, bi-level isosurface compression, space-optimized texture maps, and volume warping for adaptive isosurface extraction.

[1]  Craig Gotsman,et al.  Efficient Coding of Non-Triangular Meshes , 2000, EuroCG.

[2]  Arie E. Kaufman,et al.  Normal estimation in 3 D discrete space , 1992, The Visual Computer.

[3]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[4]  Dietmar Saupe,et al.  Rapid High Quality Compression of Volume Data for Visualization , 2001, Comput. Graph. Forum.

[5]  Lukas Mroz,et al.  Space-Efficient Boundary Representation of Volumetric Objects , 2001, VisSym.

[6]  Shi-Nine Yang,et al.  Compressing isosurfaces generated with marching cubes , 2002, The Visual Computer.

[7]  K. Tachibana,et al.  Polyhedral Surface Modeling with a Diffusion System , 1997, Comput. Graph. Forum.

[8]  Yutaka Ohtake,et al.  Detection of ridges and ravines on range images and triangular meshes , 2000, SPIE Optics + Photonics.

[9]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[10]  Gabriel Taubin,et al.  Geometric Signal Processing on Polygonal Meshes , 2000, Eurographics.

[11]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[12]  Jayaram K. Udupa,et al.  Surface Shading in the Cuberille Environment , 1985, IEEE Computer Graphics and Applications.

[13]  Dietmar Saupe,et al.  Compression of Isosurfaces , 2001, VMV.

[14]  Mark Meyer,et al.  Anisotropic Feature-Preserving Denoising of Height Fields and Bivariate Data , 2000, Graphics Interface.

[15]  Klaus Mueller,et al.  A comparison of normal estimation schemes , 1997 .

[16]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[17]  Denis Zorin,et al.  Digital geometry processing , 2001 .

[18]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[19]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[20]  Jay Torborg,et al.  Talisman: commodity realtime 3D graphics for the PC , 1996, SIGGRAPH.

[21]  Pierre Alliez,et al.  Near-Optimal Connectivity Encoding of 2-Manifold Polygon Meshes , 2002, Graph. Model..

[22]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[23]  Xiaoyu Zhang,et al.  Scalable isosurface visualization of massive datasets on COTS clusters , 2001, Proceedings IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics (Cat. No.01EX520).

[24]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[25]  Martin Isenburg,et al.  Face fixer: compressing polygon meshes with properties , 2000, SIGGRAPH.

[26]  Yutaka Ohtake,et al.  Mesh regularization and adaptive smoothing , 2001, Comput. Aided Des..

[27]  Peter Schröder,et al.  Interactive multiresolution mesh editing , 1997, SIGGRAPH.

[28]  K. Ho-Le,et al.  Finite element mesh generation methods: a review and classification , 1988 .

[29]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[30]  Gabriel Taubin,et al.  Volume warping for adaptive isosurface extraction , 2002, IEEE Visualization, 2002. VIS 2002..

[31]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[32]  Martin Rumpf,et al.  Anisotropic geometric diffusion in surface processing , 2000 .

[33]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[34]  Henning Biermann,et al.  Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.

[35]  Sarah Gibson Constrained Elastic Surface Nets: Generating Smooth Surfaces from Binary Segmented Data , 1998 .

[36]  Gabriel Taubin,et al.  BLIC: Bi-Level Isosurface Compression , 2002, IEEE Visualization, 2002. VIS 2002..

[37]  Gene H. Golub,et al.  Optimal Surface Smoothing as Filter Design , 1996, ECCV.

[38]  Maneesh Agrawala,et al.  Rendering from compressed textures , 1996, SIGGRAPH.

[39]  Hans-Peter Seidel,et al.  Multiresolution hierarchies on unstructured triangle meshes , 1999, Comput. Geom..

[40]  Jarek Rossignac,et al.  Connectivity Compression for Irregular Quadrilateral Meshes , 2000, ArXiv.

[41]  Gabriel Taubin,et al.  Dual Mesh Resampling , 2001, Graph. Model..

[42]  László Neumann,et al.  Gradient Estimation in Volume Data using 4D Linear Regression , 2000, Comput. Graph. Forum.

[43]  Kenji Shimada,et al.  A discrete spring model for generating fair curves and surfaces , 1999, Proceedings. Seventh Pacific Conference on Computer Graphics and Applications (Cat. No.PR00293).

[44]  Yutaka Ohtake,et al.  Adaptive smoothing tangential direction fields on polygonal surfaces , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[45]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[47]  Yutaka Ohtake,et al.  Polyhedral surface smoothing with simultaneous mesh regularization , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[48]  Yutaka Ohtake,et al.  Nonlinear Diffusion of Normals for Stable Detection of Ridges and Ravines on Range Images and Polygonal Models , 2000, MVA.