Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses.

Neurotransmitter release requires the specific docking of synaptic vesicles to the presynaptic plasma membrane followed by a calcium-triggered fusion event. Herein we report a previously unsuspected interaction of the synaptic vesicle protein and likely calcium sensor synaptotagmin with the plasma membrane t-SNARE SNAP-25. This interaction appears to resolve the apparent paradox that synaptic vesicles are capable of docking even when VAMP (vesicle-associated membrane protein) or syntaxin is cleaved or deleted and suggests that two species of v-SNAREs (VAMP and synaptotagmin) and two species of t-SNAREs (SNAP-25 and syntaxin) interact to functionally dock synaptic vesicles.

[1]  J. Rothman,et al.  Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[2]  M. Wilson,et al.  SNAP-25 and synaptotagmin involvement in the final Ca(2+)-dependent triggering of neurotransmitter exocytosis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  B. Dasgupta,et al.  SNAP-25 Is Required for a Late Postdocking Step in Ca2+-dependent Exocytosis* , 1996, The Journal of Biological Chemistry.

[4]  D. Atlas,et al.  Functional interaction of syntaxin and SNAP‐25 with voltage‐sensitive L‐ and N‐type Ca2+ channels. , 1996, The EMBO journal.

[5]  W. Catterall,et al.  Isoform-specific interaction of the alpha1A subunits of brain Ca2+ channels with the presynaptic proteins syntaxin and SNAP-25. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[6]  J. Rothman,et al.  Protein Sorting by Transport Vesicles , 1996, Science.

[7]  W. Catterall,et al.  Calcium-dependent interaction of N-type calcium channels with the synaptic core complex , 1996, Nature.

[8]  J. Rothman,et al.  A possible docking and fusion particle for synaptic transmission , 1995, Nature.

[9]  G. Schiavo,et al.  Structure and function of tetanus and botulinum neurotoxins , 1995, Quarterly Reviews of Biophysics.

[10]  P. Hanson,et al.  Ca2+ Regulates the Interaction between Synaptotagmin and Syntaxin 1 (*) , 1995, The Journal of Biological Chemistry.

[11]  Andreas Prokop,et al.  Syntaxin and synaptobrevin function downstream of vesicle docking in drosophila , 1995, Neuron.

[12]  T. Söllner,et al.  SNAREs and targeted membrane fusion , 1995, FEBS letters.

[13]  Thomas C. Südhof,et al.  The synaptic vesicle cycle: a cascade of protein–protein interactions , 1995, Nature.

[14]  Thomas C. Südhof,et al.  Ca2+-dependent and -independent activities of neural and non-neural synaptotagmins , 1995, Nature.

[15]  R. Kelly Neural Transmission: Synaptotagmin is just a calcium sensor , 1995, Current Biology.

[16]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[17]  G. Schiavo,et al.  [39] Tetanus and botulism neurotoxins: Isolation and assay , 1995 .

[18]  Richard G. W. Anderson,et al.  Functional properties of multiple synaptotagmins in brain , 1994, Neuron.

[19]  N. Barton,et al.  SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils. , 1994, The Journal of biological chemistry.

[20]  J. Rothman,et al.  Mechanisms of intracellular protein transport , 1994, Nature.

[21]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[22]  Richard G. W. Anderson,et al.  Synaptotagmin I is a high affinity receptor for clathrin AP-2: Implications for membrane recycling , 1994, Cell.

[23]  Jonathan Pevsner,et al.  Specificity and regulation of a synaptic vesicle docking complex , 1994, Neuron.

[24]  G. Augustine,et al.  A post-docking role for synaptobrevin in synaptic vesicle fusion , 1994, Neuron.

[25]  R. Jahn,et al.  Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. , 1994, The Journal of biological chemistry.

[26]  T. Südhof,et al.  A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. , 1993, The Journal of biological chemistry.

[27]  T. Südhof,et al.  Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin , 1993, Nature.

[28]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[29]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[30]  T. Südhof,et al.  Interaction of synaptotagmin with the cytoplasmic domains of neurexins , 1993, Neuron.

[31]  M. Takahashi,et al.  HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. , 1992, The Journal of biological chemistry.

[32]  R. Scheller,et al.  Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. , 1992, Science.

[33]  T. Südhof,et al.  Synaptotagmin: a calcium sensor on the synaptic vesicle surface. , 1992, Science.

[34]  C. Lévêque,et al.  The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthenic syndrome antigen. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Thomas C. Südhof,et al.  Binding of synaptotagmin to the α-latrotoxin receptor implicates both in synaptic vesicle exocytosis , 1991, Nature.

[36]  S. Ferro-Novick,et al.  The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast , 1991, The Journal of cell biology.

[37]  D. Gallwitz,et al.  Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily , 1991, Molecular and cellular biology.

[38]  S. Ferro-Novick,et al.  BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex , 1990, Molecular and cellular biology.

[39]  L. Reichardt,et al.  Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue , 1981, The Journal of cell biology.